博碩士論文 102326024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.117.148.222
姓名 盧怡君(Yi-chun Lu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以去官能基化二氧化鈦/單壁奈米碳管複合材料修飾玻璃碳電極進行COD之伏安法分析
(Using the defunctionalized TiO2/SWCNTs composite modified GCE to analyze COD via voltammetry)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 化學需氧量(chemical oxygen demand, COD)是用來檢測水中有機污染物含量以及水質監測的重要參數之一。為了減少傳統分析方法所帶來的廢液及有害物,並且減少分析上的誤差,本研究製備去官能基化TiO2/ SWCNTs修飾玻璃碳電極進行COD之伏安法分析。經由表面物化特性以及電流反應強度分析,去官能基後的複合材料表面並不會受到破壞且仍具有催化效果,最後選定以高溫300℃處理的TiO2/ SWCNTs為修飾電極。藉由模擬水樣分析結果顯示,去除TiO2/ SWCNTs表面官能基後,修飾電極確實有較佳的穩定度以及準確度,電流值與COD濃度也有良好的線性關係,並且可量測至0.1 mg/L。在進行多次實場廢水分析結果顯示,對於處理過的或是組成較單純的廢水,LSV法與COD標準方法所得到的變化趨勢相近。
摘要(英) Chemical oxygen demand (COD) is usually monitored because it is one of the important water qualities, which indicates the degree of pollution by organic compounds. To reduce the error in analysis and to limit the consumption of toxic chemicals in standard COD analysis, GCE electrodes were modified by defunctionalized TiO2/ SWCNTs composite and used in COD measurements via voltammetry. The surface physical and chemical properties of TiO2/ SWCNTs composite have been investigated. It was found that the TiO2/ SWCNTs composite treated at 300℃ has the least amount of functional groups and the best electrical property. It was also found that by defunctionalizaion of TiO2/ SWCNTs has improved the stability and the sensitivity of linear scanning voltammetry (LSV). Good correlation between oxidation peak current and COD concentration of modeled water and a low detection limit to 0.1 mg/L were achieved. The analysis of real wastewater samples was carried out by both the LSV and the standard dichromate method. It is found that COD values determined via LSV and standard dichromate method had similar results when the wastewater was treated.
關鍵字(中) ★ 線性掃描伏安法
★ TiO2/ CNTs
★ 熱處理
關鍵字(英) ★ Linear sweep voltammetry
★ TiO2/ CNTs
★ thermal treatment
論文目次 摘要…………………………………………………………………………………………………………………………………I
Abstract……………………………………………………………………………………………………………………II
誌謝………………………………………………………………………………………………………………………………III
圖目錄…………………………………………………………………………………………………………………………VIII
表目錄…………………………………………………………………………………………………………………………XI
第一章 前言……………………………………………………………………………………………………………1
1-1 研究緣起………………………………………………………………………………………………………………1
1-2 研究動機………………………………………………………………………………………………………………3
1-3 研究目的………………………………………………………………………………………………………………3
1-4 研究流程………………………………………………………………………………………………………………4
第二章 文獻回顧……………………………………………………………………………………………………5
2-1 COD檢測方法………………………………………………………………………………………………………5
2-2 電化學分析…………………………………………………………………………………………………………8
2-2-1 電化學反應……………………………………………………………………………………………………8
2-2-2 循環伏安法……………………………………………………………………………………………………9
2-2-2 線性掃描伏安法………………………………………………………………………………………10
2-3 奈米碳管……………………………………………………………………………………………………………11
2-3-1 奈米碳管基本特性……………………………………………………………………………………11
2-3-2 奈米碳管的純化與改質…………………………………………………………………………13
2-4 奈米碳管修飾電極電化學分析應用………………………………………………………16
2-4-1奈米碳管修飾電極………………………………………………………………………………………16
2-5 奈米碳管複合材料製備及去官能基處理………………………………………………18
2-5-1 TiO2/CNTs複合材料製備……………………………………………………………………18
2-5-2複合材料表面改質………………………………………………………………………………………19
2-6 奈米碳管修飾電極對電化學訊號的影響………………………………………………22
第三章 實驗方法…………………………………………………………………………………………………24
3-1 實驗材料與設備……………………………………………………………………………………………24
3-1-1 實驗材料……………………………………………………………………………………………………24
3-1-2 實驗設備……………………………………………………………………………………………………26
3-2 實驗方法…………………………………………………………………………………………………………29
3-2-1 單壁奈米碳管酸化處理………………………………………………………………………29
3-2-2 製備TiO2/ SWCNTs複合材料…………………………………………………………30
3-2-3 TiO2/ SWCNTs去官能基處理…………………………………………………………31
3-2-4 貝姆滴定法(Boehm’s titration)……………………………………………32
3-2-5 複合材料修飾電極製備………………………………………………………………………32
3-2-6電化學分析…………………………………………………………………………………………………33
第四章 結果與討論…………………………………………………………………………………………37
4-1 複合材料之特性鑑定…………………………………………………………………………………37
4-1-1 晶相分析……………………………………………………………………………………………………37
4-1-2 比表面積與孔洞分析……………………………………………………………………………38
4-1-3 表面型態觀察…………………………………………………………………………………………38
4-1-4 官能基分析………………………………………………………………………………………………40
4-2 TiO2/ SWCNTs複合材料修飾電極之電化學特性…………………………42
4-2-1 TiO2/ SWCNTs修飾電極前處理……………………………………………………42
4-2-2電極確效性…………………………………………………………………………………………………45
4-2-3修飾電極反應電流測定…………………………………………………………………………47
4-3 奈米碳管修飾電極分析水中COD…………………………………………………………49
4-3-1模擬水樣掃描條件選定及COD分析…………………………………………………50
4-3-2 實場水樣掃描條件選定及COD分析………………………………………………64
4-4 TiO2/ SWCNTs修飾電極對水質之電化學反應……………………………82
4-4-1 固定電位對KHP與SA之影響……………………………………………………………82
第五章 結論與建議…………………………………………………………………………………………87
5-1 結論…………………………………………………………………………………………………………………87
5-2 建議…………………………………………………………………………………………………………………89
參考文獻…………………………………………………………………………………………………………………90

參考文獻 Bard, A. J., and Faulkner, L. R., "Electrochemical methods: fundamentals and applications", 2, (1980).

Cao, Q., Yu, Q., Connell, D. W., and Yu, G., "Titania/carbon nanotube composite (TiO2/CNT) and its application for removal of organic pollutants", Clean Technologies and Environmental Policy, 15, 871-880 (2013).

Chang, C.-M., and Liu, Y.-L., "Electrical conductivity enhancement of polymer/multiwalled carbon nanotube (MWCNT) composites by thermally-induced defunctionalization of MWCNTs", ACS applied materials & interfaces, 3, 2204-2208 (2011).

Chen, J., Zheng, X., Miao, F., Zhang, J., Cui, X., and Zheng, W., "Engineering graphene/carbon nanotube hybrid for direct electron transfer of glucose oxidase and glucose biosensor", Journal of Applied Electrochemistry, 42, 875-881 (2012).

Chin, C.-J. M., Shih, M.-W., and Tsai, H.-J., "Adsorption of nonpolar benzene derivatives on single-walled carbon nanotubes", Applied Surface Science, 256, 6035-6039 (2010).

Chong, M. N., Jin, B., Chow, C. W. K., and Saint, C., "Recent developments in photocatalytic water treatment technology: A review", Water Research, 44, 2997-3027 (2010).

Chu, D.-B., Shen, G., Zhou, X., Lin, C., and Lin, H., "Electrocatalytic activity of nanocrystalline TiO2 film modified Ti electrode", (2002).

Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., and Galiotis, C., "Chemical oxidation of multiwalled carbon nanotubes", Carbon, 46, 833-840 (2008).

Duong, T. T., Nguyen, Q. D., Hong, S. K., Kim, D., Yoon, S. G., and Pham, T. H., "Enhanced Photoelectrochemical Activity of the TiO2/ITO Nanocomposites Grown onto Single‐Walled Carbon Nanotubes at a Low Temperature by Nanocluster Deposition", Advanced Materials, 23, 5557-5562 (2011).

Eatemadi, A., Daraee, H., Karimkhanloo, H., Kouhi, M., Zarghami, N., Akbarzadeh, A., Abasi, M., Hanifehpour, Y., and Joo, S. W., "Carbon nanotubes: properties, synthesis, purification, and medical applications", Nanoscale research letters, 9, 1-13 (2014).

Eder, D., and Windle, A. H., "Carbon–Inorganic Hybrid Materials: The Carbon‐Nanotube/TiO2 Interface", Advanced Materials, 20, 1787-1793 (2008).

Ensafi, A. A., Khoddami, E., Rezaei, B., and Karimi-Maleh, H., "p-Aminophenol–multiwall carbon nanotubes–TiO 2 electrode as a sensor for simultaneous determination of penicillamine and uric acid", Colloids and Surfaces B: Biointerfaces, 81, 42-49 (2010).

Fakhari, A. R., Rafiee, B., Ahmar, H., and Bagheri, A., "Electrocatalytic determination of oxalic acid by TiO2 nanoparticles/multiwalled carbon nanotubes modified electrode", Analytical Methods, 4, 3314 (2012).

Fan, Y., Liu, J.-H., Lu, H.-T., and Zhang, Q., "Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2–graphene modified glassy carbon electrode", Colloids and Surfaces B: Biointerfaces, 85, 289-292 (2011).

Heras, A., Colina, A., López-Palacios, J., Ayala, P., Sainio, J., Ruiz, V., and Kauppinen, E. I., "Electrochemical purification of carbon nanotube electrodes", Electrochemistry Communications, 11, 1535-1538 (2009).

Hou, P.-X., Liu, C., and Cheng, H.-M., "Purification of carbon nanotubes", Carbon, 46, 2003-2025 (2008).

Iijima, S., "Helical microtubules of graphitic carbon", Nature, 354, 56-58 (1991).

Jain, R., and Sharma, S., "Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems", Journal of Pharmaceutical Analysis, 2, 56-61 (2012).

Kedem, S., Schmidt, J., Paz, Y., and Cohen, Y., "Composite polymer nanofibers with carbon nanotubes and titanium dioxide particles", Langmuir, 21, 5600-5604 (2005).

Kim, Y. S., Yang, S. J., Lim, H. J., Kim, T., and Park, C. R., "A simple method for determining the neutralization point in Boehm titration regardless of the CO2 effect", Carbon, 50, 3315-3323 (2012).

Korbély, B., Németh, Z., Réti, B., Seo, J. W., Magrez, A., Forró, L., and Hernadi, K., "Fabrication of homogeneous titania/MWNT composite materials", Materials Research Bulletin, 46, 1991-1996 (2011).

Lee, K.-H., Kim, Y.-C., Suzuki, H., Ikebukuro, K., Hashimoto, K., and Karube, I., "Disposable Chemical Oxygen Demand Sensor Using a Microfabricated Clark-Type Oxygen Electrode with a TiO2 Suspension Solution", Electroanalysis, 12, 1334-1338 (2000).

Lee, S.-w., and Sigmund, W. M., "Formation of anatase TiO 2 nanoparticles on carbon nanotubes", Chemical Communications, 780-781 (2003).

Luo, H., Shi, Z., Li, N., Gu, Z., and Zhuang, Q., "Investigation of the Electrochemical and Electrocatalytic Behavior of Single-Wall Carbon Nanotube Film on a Glassy Carbon Electrode", Analytical Chemistry, 73, 915-920 (2001).

Ma, C., Tan, F., Zhao, H., Chen, S., and Quan, X., "Sensitive amperometric determination of chemical oxygen demand using Ti/Sb–SnO2/PbO2 composite electrode", Sensors and Actuators B: Chemical, 155, 114-119 (2011).

Male, K. B., Hrapovic, S., Liu, Y., Wang, D., and Luong, J. H. T., "Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes", Analytica Chimica Acta, 516, 35-41 (2004).

Meng, Z., Zhang, H., and Zheng, J., "An electrochemical sensor based on titanium oxide–carbon nanotubes nanocomposite for simultaneous determination of hydroquinone and catechol", Research on Chemical Intermediates, 41, 3135-3146 (2015).

Oh, W.-C., Jung, A.-R., and Ko, W.-B., "Characterization and relative photonic efficiencies of a new nanocarbon/TiO2 composite photocatalyst designed for organic dye decomposition and bactericidal activity", Materials Science and Engineering: C, 29, 1338-1347 (2009).

Pan, B., and Xing, B., "Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes", Environmental Science & Technology, 42, 9005-9013 (2008).

Pan, Y., Cheng, H. K. F., Li, L., Chan, S. H., Zhao, J., and Juay, Y. K., "Annealing induced electrical conductivity jump of multi‐walled carbon nanotube/polypropylene composites and influence of molecular weight of polypropylene", Journal of Polymer Science Part B: Polymer Physics, 48, 2238-2247 (2010).

Saleh, T. A., and Gupta, V. K., "Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide", Journal of Colloid and Interface Science, 371, 101-106 (2012).

Sharif Zein, S. H., and Boccaccini, A. R., "Synthesis and Characterization of TiO2 Coated Multiwalled Carbon Nanotubes Using a Sol Gel Method", Industrial & Engineering Chemistry Research, 47, 6598-6606 (2008).

Tominaga, M., Shimazoe, T., Nagashima, M., and Taniguchi, I., "Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions", Electrochemistry Communications, 7, 189-193 (2005).

Tsai, D. W., and Chen, P. H., "不同模式之預測能力研究", Journal of Soil and Water Conservation, 37(2), 127-138 (2005).

Wang, S., Jiang, S. P., and Wang, X., "Polyelectrolyte functionalized carbon nanotubes as a support for noble metal electrocatalysts and their activity for methanol oxidation", Nanotechnology, 19, 265601 (2008).

Xia, X.-H., Jia, Z.-J., Yu, Y., Liang, Y., Wang, Z., and Ma, L.-L., "Preparation of multi-walled carbon nanotube supported TiO 2 and its photocatalytic activity in the reduction of CO 2 with H 2 O", Carbon, 45, 717-721 (2007).

Yao, Y., Li, G., Ciston, S., Lueptow, R. M., and Gray, K. A., "Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity", Environmental science & technology, 42, 4952-4957 (2008).

Zhang, F.-J., Chen, M.-L., and Oh, W.-C., "Photoelectrocatalytic properties and bactericidal activities of silver-treated carbon nanotube/titania composites", Composites Science and Technology, 71, 658-665 (2011).

Zhang, Y., Xiao, S., Xie, J., Yang, Z., Pang, P., and Gao, Y., "Simultaneous electrochemical determination of catechol and hydroquinone based on graphene–TiO2 nanocomposite modified glassy carbon electrode", Sensors and Actuators B: Chemical, 204, 102-108 (2014).

Zhou, X., Zheng, Y., Liu, D., and Zhou, S., "Photoelectrocatalytic Degradation of Humic Acids Using Codoped TiO2 Film Electrodes under Visible Light", International Journal of Photoenergy, 2014, 1-10 (2014).

Zhou, Y., Jing, T., Hao, Q., Zhou, Y., and Mei, S., "A sensitive and environmentally friendly method for determination of chemical oxygen demand using NiCu alloy electrode", Electrochimica Acta, 74, 165-170 (2012).

秦靜如、黃韻寧、莊惠婷,「奈米碳管修飾電極進行環境水質分析之先期研究(1/4)」,行政院環境保護署環境檢驗所研究計畫 (計畫編號:EPA-102-E3S3-02-01),2013。

秦靜如、盧怡君、張雅雯、黃韻寧、莊惠婷,「運用奈米碳管修飾電極進行水質分析(2/4)」,行政院環境保護署環境檢驗所研究計畫 (計畫編號:EPA-103-E3S3-02-02),2014。

匡元生化科技 CBT Nano-scale Supplier carbon nanotube
杜玉琴,「鄰苯二甲酸酯類和腐植酸在多壁奈米碳管上的吸附」,碩士論文, 國立中央大學環境工程研究所,中壢,2011。

周貝倫,「純化程序對奈米碳管表面特性影響之研究」碩士論文,國立中央大學環境工程研究所,中壢,2006。

胡啟章,「電化學原理與方法」,五南圖書出版社,2011。
陳凱欣,「以溶膠凝膠法製備MWCNTs/TiO2及其光催化特性」,碩士論文,國立中央大學環境工程研究所,中壢,2013。

曾俊豪,「利用新穎電漿技術改質奈米碳管以製備導電複合材料之研究」, 博士論文,國立成功大學化學工程學系,臺南,2009。

黃喬渝,「單壁奈米碳管修飾電極對硝基酚和銅之電化學分析」,碩士論文, 國立中央大學環境工程研究所,中壢,2012。
指導教授 秦靜如(Ching-ju Chin) 審核日期 2015-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明