博碩士論文 102323013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:143 、訪客IP:3.137.170.183
姓名 侯梵琳(Fan-lin Hou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鍶錳酸鑭鍍層對固態氧化物燃料電池接合件機械性質之影響
(Effects of LSM Coating on Joining Strength Between Metallic Interconnect and Glass-Ceramic Sealant for Solid Oxide Fuel Cell)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目的在探討環境及溫度對於玻璃陶瓷接合劑與含鍶錳酸鑭(LSM)鍍層之金屬連接板接合件的接合強度及破壞模式的影響,所使用的玻璃陶瓷為核能研究所開發一款代號為GC-9的材質,LSM鍍層材質為La0.67Sr0.33MnO3,金屬連接板則是使用代號為Crofer 22 APU的商用肥粒鐵系不銹鋼。藉由製作四款三明治試片,分別量測未含有鍍層及含有鍍層接合件在室溫與800 °C氧化環境下的剪力及張力強度,同時量測含有鍍層接合件的張力及剪力試片在室溫與800 °C還原環境下的強度。
實驗結果顯示,高溫下玻璃膠軟化致使任何一種試片在高溫環境測試的強度皆下降。含有LSM鍍層的試片與未含有LSM鍍層的試片相比較,不論在高溫還是常溫,其強度下降36 ~ 80%。含有鍍層的剪力試片在氧化環境時效1000小時後,強度明顯較未時效的試片上升52 ~ 200%,因為玻璃膠在時效時會軟化進而填補孔洞;但對於張力試片而言,時效後的強化現象並不顯著。在還原環境時效後,剪力試片的接合強度下降44 ~ 100%;張力試片在常溫測試下接合強度下降65%,但高溫時由於玻璃膠軟化後填補孔洞,強度上升87%。對於未時效的試片而言,短時間的機械測試環境效應對於接合件強度有些微的影響,但不顯著。而在還原環境時效1000小時後的含有鍍層試片,相較於在氧化環境時效後試片的強度為低,唯有在高溫測試的張力試片,因為還原環境中的水氣成份滲透玻璃膠使其軟化,致使強度上升。
由微結構及破斷面分析結果發現,含鍍層的接合件在LSM鍍層與GC-9玻璃膠之間會有明顯的孔洞產生。氧化鉻會形成在LSM鍍層與金屬基板之間,而只在氧化環境長時效處理的試片發現較明顯的鉻酸鋇存在,乃是因為氧化環境的長時效處理會使得LSM鍍層變薄產生裂縫。因此,LSM鍍層可以有效阻擋鉻毒化。還原環境的時效試片則會因為環境中缺乏氧氣不利於玻璃膠與LSM鍍層形成結晶相,甚至使得LSM鍍層中的化合物裂解、孔洞集中且擴大,導致還原環境時效後的試片強度下降。在長時效的試片,皆可以在孔洞中觀察到尖晶石結構,但在氧化環境中觀察到較密集的尖晶石。接合件強度與破裂介面位置,主要受孔洞分布位置的影響。部份試片則因為在高溫時效處理時玻璃軟化、填補空孔,使其強度上升。
摘要(英) The objective of this study is to investigate the joint strength between glass-ceramic sealant and LSM-coated metallic interconnect both in air and a reducing environment (H2-7 vol% H2O) at RT and 800 °C. The applied materials are a GC-9 glass-ceramic developed at the Institute of Nuclear Energy Research (INER), a LSM layer coated at INER, and a commercial Crofer 22 APU ferritic stainless steel.
The joint strength is reduced as the testing temperature is increased from room temperature (RT) to 800 °C, regardless of specimen condition. The joint strength between the given GC-9 glass-ceramic sealant and Crofer 22 APU interconnect steel is degraded by 36-80% in applying a LSM coating on the interconnect steel. The shear strength of LSM-coated specimen is enhanced by 52-200% at RT and 800 °C after 1000-h thermal aging in air. This may be attributed to a self-healing effect of the GC-9 glass-ceramic during the thermal aging treatment in air to reduce the pore size existent around the GC-9/LSM interface. As for tensile specimen, the enhancement of joint strength is insignificant after thermal aging in air. A thermal aging of 1000 h in H2-7 vol% H2O reduces the shear strength by 44-100% at RT and 800 °C while it reduces 65% of the tensile strength at RT but enhances it by 87% at 800 °C. The enhancement of tensile strength at 800 °C may result from diffusion of water into GC-9 and relaxation of GC-9 structure during thermal aging in wet hydrogen.
No significant environment effect on the joint strength of non-aged, coated specimen is found due to a short period of mechanical testing. After 1000 h-aging in each environment, the joint strength of coated specimens aged in H2-7 vol% H2O is generally lower than that aged in air except the tensile strength at 800 °C. The exception may be associated with a water softening effect during thermal aging in H2-7 vol% H2O.
Cr2O3 is observed between LSM and metal substrate in the LSM-coated joint. Pores within GC-9 as well as at the interface of LSM and GC-9 are found in the LSM-coated specimen. Cr is well blocked by the LSM coating such that BaCrO4 is observed only in air-aged specimen due to LSM volume shrinkage. Spinel is observed within the GC-9 pores on the LSM layer after thermal aging in both oxidizing and reducing environments, with a higher density found in the specimen aged in air. The joint strength and fracture path are affected by the pores existent around the LSM/GC-9 interface for the LSM-coated joint. A self-healing effect of GC-9 glass-ceramic at high temperature could help heal these pores and improve the joint strength.
關鍵字(中) ★ 固態氧化物燃料電池
★ 接合件強度
★ 玻璃陶瓷膠
★ 連接板
★ 鍶錳酸鑭鍍層
★ 環境效應
關鍵字(英) ★ Solid oxide fuel cel
★ Joint strength
★ Glass-ceramic sealant
★ Interconnect
★ LSM coating
★ Environmental Effect
論文目次 LIST OF TABLES VIII
LIST OF FIGURES IX
1. INTRODUCTION 1
1.1 Solid Oxide Fuel Cell 1
1.2 Glass Sealant 2
1.3 Joint of Glass-Ceramic Sealant and Metallic Interconnect 5
1.4 Effects of Coating on the Metallic Interconnect 7
1.5 Purpose 11
2. MATERIALS AND EXPERIMENTAL PROCEDURES 13
2.1 Materials and Specimen Preparation 13
2.2 Mechanical Testing 15
2.3 Microstructural Analysis 16
3. RESULTS AND DISCUSSION 17
3.1 Joint Strength in Oxidizing Atmosphere 18
3.1.1 Effect of LSM coating 18
3.1.2 Effect of aging on coated joint 23
3.2 Joint Strength in Reducing Atmosphere 27
3.2.1 Effect of LSM coating 27
3.2.2 Effect of aging on coated joint 29
3.3 Comparison of Joint Strength in Oxidizing and Reducing Environments 33
3.4 Overall Comparison 34
4. CONCLUSIONS 37
REFERENCES 39
TABLES 45
FIGURES 48
參考文獻 1. W. Z. Zhu and S. C. Deevi, “A Review on the Status of Anode Materials for Solid Oxide Fuel Cells,” Materials Science and Engineering, Vol. A362, pp. 228-239, 2003.
2. K. Kendall, N. Q. Minh, and S. C. Singhal, “Cell and Stack Designs,” Chapter 8 in High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, edited by S. C. Singhal and K. Kendall, Elsevier, Kidlington, UK, 2003.
3. P. Batfalsky, V. A. C. Haanappel, J. Malzbender, N. H. Menzler, V. Shemet, I. C. Vinke, and R. W. Steinbrech, “Chemical Interaction Between Glass-Ceramic Sealants and Interconnect Steels in SOFC Stacks,” Journal of Power Sources, Vol. 155, pp. 128-137, 2006.
4. Y. Zhao and J. Malzbender, “Elevated Temperature Effects on the Mechanical Properties of Solid Oxide Fuel Cell Sealing Materials,” Journal of Power Sources, Vol. 239, pp. 500-504, 2013.
5. A. Nakajo, J. Kuebler, A. Faes, U. F. Vogt, Hans J. Schindler, L.-K. Chiang, S. Modena, J. van Herle, and T. Hocker, “Compilation of Mechanical Properties for the Structural Analysis of Solid Oxide Fuel Cell Stacks. Constitutive Materials of Anode-Supported Cells,” Ceramics International, Vol. 38, pp. 3907-3927, 2012.
6. G. Kaur, O. P. Pandey, and K. Singh, “Interfacial Study Between High Temperature SiO2-B2O3-AO-La2O3 (A= Sr, Ba) Glass Seals and Crofer 22APU for Solid Oxide Fuel Cell Applications,” International Journal of Hydrogen Energy, Vol. 37, pp. 6862-6874, 2012.
7. J. W. Fergus, “Sealants for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 147, pp. 46-57, 2005.
8. K. S. Weil, J. S. Hardy, and B. J. Koeppel, “New Sealing Concept for Planar Solid Oxide Fuel Cells,” Journal of Materials Engineering and Performance, Vol 15, pp. 427-432, 2006.
9. K. S. Weil and B. J. Koeppel, “Thermal Stress Analysis of the Planar SOFC Bonded Compliant Seal Design,” International Journal of Hydrogen Energy, Vol. 33, pp. 3976-3990, 2008.
10. Y. Zhao, J. Malzbender, and S. M. Gross, “The Effect of Room Temperature and High Temperature Exposure on the Elastic Modulus, Hardness and Fracture Toughness of Glass Ceramic Sealants for Solid Oxide Fuel Cells,” Journal of the European Ceramic Society, Vol 31, pp. 541-548, 2011.
11. V. A. C. Haanappel, V. Shemet, S. M. Gross, Th. Koppitz, N. H. Menzler, M. Zahid, and W. J. Quadakkers, “Behaviour of Various Glass-Ceramic Sealants with Ferritic Steels under Simulated SOFC Stack Conditions,” Journal of Power Sources, Vol. 150, pp. 86-100, 2005.
12. P. A. Lessing, “A Review of Sealing Technologies Applicable to Solid Oxide Electrolysis Cells,” Journal of Materials Science, Vol. 42, pp. 3465-3476, 2007.
13. K. S. Weil, “The State-of-the-Art in Sealing Technology for Solid Oxide Fuel Cells,” JOM, Vol. 58, pp. 37-44, 2006.
14. G. Kaur, O. P. Pandey, and K. Singh, “Interfacial Study Between High Temperature SiO2-B2O3-AO-La2O3 (A = Sr, Ba) Glass Seals and Crofer 22APU for Solid Oxide Fuel Cell Applications,” International Journal of Hydrogen Energy, Vol. 37, pp. 6862-6874, 2012.
15. S. R. Choi and N. P. Bansal, “Mechanical Properties of SOFC Seal Glass Composites,” Ceramic Engineering and Science Proceedings, Vol. 26, pp. 275-283, 2005.
16. C.-K. Liu, T.-Y. Yung, and K.-F. Lin, “Effect of La Addition on the Thermal and Crystalline Properties of SiO2-B2O3-Al2O3-BaO Glasses,” Proceedings of the Annual Conference of the Chinese Ceramic Society (CD-ROM), 2007. (in Chinese)
17. C.-K. Liu, T.-Y. Yung, S.-H. Wu, and K.-F. Lin, “Study on a SiO2-B2O3-Al2O3-BaO Glass System for SOFC Applications,” Proceedings of the MRS_Taiwan Annual Meeting (CD-ROM), 2007. (in Chinese)
18. C.-K. Liu, T.-Y. Yung, and K.-F. Lin, “Isothermal Crystallization Properties of SiO2-B2O3-Al2O3-BaO Glass,” Proceedings of the Annual Conference of the Chinese Ceramic Society (CD-ROM), 2008. (in Chinese)
19. H.-T. Chang, “High-Temperature Mechanical Properties of a Glass Sealant for Solid Oxide Fuel Cell,” Ph.D. Thesis, National Central University, Jhong-Li, Taiwan, 2010.
20. J.-H. Yeh, “Analysis of High-Temperature Mechanical Durability for the Joint of Glass Ceramic Sealant and Metallic Interconnect for Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2011.
21. C.-K. Lin, T.-T. Chen, Y.-P. Chyou, and L.-K. Chiang, “Thermal Stress Analysis of a Planar SOFC Stack,” Journal of Power Sources, Vol. 164, pp. 238-251, 2007.
22. A.-S. Chen, “Thermal Stress Analysis of a Planar SOFC Stack with Mica Sealants,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2007.
23. C.-K. Lin, L.-H. Huang, L.-K. Chiang, and Y.-P. Chyou, “Thermal Stress Analysis of a Planar Solid Oxide Fuel Cell Stacks: Effects of Sealing Design,” Journal of Power Sources, Vol. 192, pp. 515-524, 2009.
24. Y.-S. Chou, J. W. Stevenson, and P. Singh, “Effect of Pre-Oxidation and Environmental Aging on the Seal Strength of a Novel High-Temperature Solid Oxide Fuel Cell (SOFC) Sealing Glass with Metallic Interconnect,” Journal of Power Sources, Vol. 184, pp. 238-244, 2008.
25. V. A. Haanappel, V. Shemet, I. C. Vinke and W. J. Quadakkers, “A Novel Method to Evaluate the Suitability of Glass Sealant-Alloy Combinations under SOFC Stack Conditions,” Journal of Power Sources, Vol. 141, pp. 102-107, 2005.
26. J. Malzbender, J. Mönch, R. W. Steinbrech, T. Koppitz, S. M. Gross and J. Remmel, “Symmetric Shear Test of Glass-Ceramic Sealants at SOFC Operation Temperature,” Journal of Materials Science, Vol. 42, pp. 6297-6301, 2007.
27. K. S. Weil, J. E. Deibler, J. S. Hardy, D. S. Kim, G.-G. Xia, L. A. Chick, and C. A. Coyle, “Rupture Testing as a Tool for Developing Planar Solid Oxide Fuel Cell Seals,” Journal of Materials Engineering and Performance, Vol. 13, pp. 316-326, 2004.
28. F. Smeacetto, M. Salvo, M. Ferraris, V. Casalegno, P. Asinari, and A. Chrysanthou, “Characterization and Performance of Glass-Ceramic Sealant to Join Metallic Interconnects to YSZ and Anode-Supported-Electrolyte in Planar SOFCs,” Journal of the European Ceramic Society, Vol. 28, pp. 2521-2527, 2008.
29. E. V. Stephens, J. S. Vetrano, B. J. Koeppel, Y. Chou, X. Sun, and M. A. Khaleel, “Experimental Characterization of Glass-Ceramic Seal Properties and their Constitutive Implementation in Solid Oxide Fuel Cell Stack Models,” Journal of Power Sources, Vol. 193, pp. 625-631, 2009.
30. J.-Y. Chen, “Analysis of Mechanical Properties for the Joint of Metallic Interconnect and Glass Ceramic in Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2010.
31. W.-J. Shong, C.-K. Liu, and P. Yang, “Effects of Electroless Nickel Plating on 441 Stainless Steel as SOFC Interconnect,” Materials Chemistry and Physics, Vol. 134, pp. 670-676, 2012.
32. Y.-S. Chou, J. W. Stevenson, and P. Singh, ”Effect of Aluminizing of Cr-Containing Ferritic Alloys on the Seal Strength of a Novel High-Temperature Solid Oxide Fuel Cell Sealing Glass,” Journal of Power Sources, Vol. 185, pp. 1001-1008, 2008.
33. F. Smeacetto, A. D. Miranda, S. C. Polo, S. Molin, D. Boccaccini, M. Salvo, and A. R. Boccaccini, “Electrophoretic Deposition of Mn1.5Co1.5O4 on Metallic Interconnect and Interaction with Glass-Ceramic Sealant for Solid Oxide Fuel Cells Application,” Journal of Power Sources, Vol. 280, pp. 379-386, 2015.
34. Y.-S. Chou, E. C. Thomsen, J.-P. Choi, and J. W. Stevenson, “Compliant Alkali Silicate Sealing Glass for Solid Oxide Fuel Cell Applications: The Effect of Protective YSZ Coating on Electrical Stability in Dual Environment,“ Journal of Power Sources, Vol. 202, pp. 149-156, 2012.
35. M. K. Mahapatra and K. Lu, “Seal Glass Compatibility with Bare and (Mn,Co)3O4 Coated Crofer 22 APU Alloy in Different Atmospheres,” Journal of Power Sources, Vol. 196, pp. 700-708, 2011.
36. Q.-H. Wu, M. Liu, and W. Jaegermann, “X-ray Photoelectron Spectroscopy of La0.5Sr0.5MnO3,” Materials Letters, Vol. 59, pp. 1980-1983, 2005.
37. P. Yang, C.-K. Liu, J.-Y. Wu, W-J. Shong, and R.-Y. Lee, “Electrical and Microstructural Properties of Ceramic Protective Film Coated Stainless Steels Using Pulsed DC Magnetron Sputtering,” Proceedings of the Annual Conference of the Chinese Ceramic Society, 2013. (in Chinese)
38. D. L. Meixner and R. A. Cutler, “Sintering and Mechanical Characteristics of Lanthanum Strontium Manganite,” Solid State Ionics, Vol. 146, pp. 273-284, 2002.
39. H. Zhai, W. Guan, Z. Li, C. Xu, and W. Wang, “Research on Performance of LSM Coating on Interconnect Material for SOFCs,” Journal of the Korean Ceramic Society, Vol. 45, pp. 777-781, 2008.
40. L. Da Conceição, L. Dessemond, E. Djurado, and E. N. S. Muccillo, “La0.7Sr0.3MnO3-Barrier for Cr2O3-forming SOFC Interconnect Alloy Coated by Electrostatic Spray Deposition,” Surface & Coatings Technology, Vol. 254, pp. 157-166, 2014.
41. S.-S. Pyo, S.-B. Lee, T.-H. Lim, R.-H. Song, D.-R. Shin, S.-H. Hyun, and Y.-S. Yoo, ”Chracteristic of (La0.8Sr0.2)0.98MnO3 Coating on Crofer 22 APU Used as Metallic Interconnects for Solid Oxide Fuel Cell,” Internal Journal of Hydrogen Energy, Vol. 36, pp. 1868-1881, 2011.
42. P. Yang, C.-K. Liu, J.-Y. Wu, W-J. Shong, R.-Y. Lee, and C.-C. Sung, “Effects of Pre-Oxidation on the Microstructural and Electrical Properties of La0.67Sr0.33MnO3- Coated Ferritic Stainless Steels,” Journal of Power Sources, Vol. 213, pp.63-68, 2012.
43. N. Orlovskaya, A. Coratolo, C. Johnson, and R. Gemmen, “Structural Characterization of Lanthanum Chromite Perovskite Coating Deposited by Magnetron Sputtering on an Iron-Based Chromium-Containing Alloy as a Promising Interconnect Material for SOFCs,” Journal of the American Ceramic Society, Vol. 87, pp. 1981-1987, 2004.
44. D.-J. Jan, C.-T. Lin, and C.-F. Ai, “Structural Characterization of La0.67Sr0.33MnO3 Protective Coatings for Solid Oxide Fuel Cell Interconnect Deposited by Pulsed Magnetron Sputtering,” Thin Solid Films, Vol. 516, pp. 6300-6304, 2008.
45. C.-L. Chu, J. Lee, T.-H. Lee, and Y.-N. Cheng, “Oxidation Behavior of Metallic Interconnect Coated with La-Sr-Mn Film by Screen Painting and Plasma Sputtering,” International Journal of Hydrogen Energy, Vol. 34, pp. 422-434, 2009.
46. C.-L. Chu, J.-Y. Wang, and S. Lee, “Effects of La0.67Sr0.33MnO3 Protective Coating on SOFC Interconnect by Plasma-Sputtering,” International Journal of Hydrogen Energy, Vol. 33, pp. 2536-2546, 2008.
47. M. Stanislowski, J. Froitzheim, L. Niewolak, W. J. Quadakkers, K. Hilpert, T. Markus, and L. Singheiser, “Reduction of Chromium Vaporization from SOFC Interconnectors by Highly Effective Coatings,” Journal of Power Source, Vol. 164, pp. 578-589, 2007.
48. A. K. Sahu, A. Ghosh, and A. K. Suri, “Characterization of Porous Lanthanum Strontium Manganite (LSM) and Development of Yttria Stabilized Zirconia (YSZ) Coating,” Ceramics International, Vol. 35, pp. 2493-2497, 2009.
49. M. K. Mahapatra and K. Lu, “Seal Glass Compatibility with Bare and (Mn,Co)3O4 Coated AISI 441 Alloy in Solid Oxide Fuel/Electrolyzer Cell Atmospheres,” International Journal of Hydrogen Energy, Vol. 35, pp. 11908-11917, 2010.
50. J.-W. Tian, “Analysis of Thermal Stress and Mechanical Properties for the Components of Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2009.
51. K.-L. Lin, “Analysis of Creep Properties of Glass Ceramic Sealant and Its Joint with Metallic Interconnect for Solid Oxide Fuel Cells,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2012.
52. Y.-T. Chiu, “Creep and Thermo-Mechanical Fatigue Properties of Ferritic Stainless Steels for Use in Solid Oxide Fuel Cell Interconnect,” Ph.D. Thesis, National Central University, Jhong-Li, Taiwan, 2012.
53. W.-H. Shiu, “Analysis of Interfacial Cracking Resistance of Solid Oxide Fuel Cell Stack Joints,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2013.
54. Y.-A. Liu, “Environmental Effects on the Mechanical Properties of Joints in Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, Jhong-Li, Taiwan, 2014.
55. C.-K. Liu, T.-Y. Yung, K.-F. Lin, R.-Y. Lee, and T.-S. Lee, Glass-Ceramic Sealant for Planar Solid Oxide Fuel Cells, United States Patent No.7,897,530 B2, 2011.
56. C.-L. Chu, “High Temperature Oxidation Behavior of Fe-Cr Alloys with and without Ceramic Coatings,” Ph.D. Thesis, National Central University, Jhong-Li, Taiwan, 2010.
57. M. Tomozawa, H. Li, and K. M. Davis, “Water Diffusion, Oxygen Vacancy Annihilation and Structural Relaxation in Silica Glasses,” Journal of Non-Crystalline Solids, Vol. 179, pp. 162-169, 1994.
58. S. Fujita, A. Sakamoto, and M. Tomozawa, “Behavior of Water in Glass During Crystallization,” Journal of Non-Crystalline Solids, Vol. 320, pp. 56-63, 2003.
59. T. Jin, M. O. Naylor, J. E. Shelby, and S. T. Misture, “Galliosilicate Glasses for Viscous Sealants in Solid Oxide Fuel Cell Stacks: Part III, Behavior in Air and Humidified Hydrogen,” International Journal of Hydrogen Energy, Vol. 38, pp. 16308-16319, 2013.
60. G. Wei, J. Qu, Z. Yu, Y. Li, Q. Guo, and T. Qi, “Mineralizer Effects on The Synthesis of Amorphous Chromium Hydroxide and Chromium Oxide Green Pigment Using Hydrothermal Reduction Method,” Dyes and Pigments, Vol. 113, pp. 487-495, 2015.
指導教授 林志光、菅田淳(Chih-kuang Lin Atsushi Sugeta) 審核日期 2015-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明