博碩士論文 102326014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.116.62.106
姓名 許家綺(Chia-chi Hsu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 大氣細懸浮微粒(氣動粒徑小於2.5μg m-3, PM2.5)會對民眾健康造成影響並導致大氣環境的變遷,檢測各地PM2.5化學特性,有助於瞭解PM2.5環境效應及污染來源。本文彙整2011年至2015年在台灣北(新莊、板橋)、中(忠明)、南(前鎮、前金、小港) 都會區環保署空氣品質監測站手動採集的PM2.5質量及化學成分濃度數據,探討台灣北、中、南部PM2.5的變化趨勢。在PM2.5採集過程,微粒半揮發性成分的揮發以及石英濾紙的吸附有機氣體會影響成分量測的正確性,本文藉由連續三張濾紙裝置進行干擾修正並探討揮發性成分特性以及影響因子。對於PM2.5污染來源,本文以受體模式PMF (Positive Matrix Factorization)進行推估,並以CPF (Conditional Probability Function)輔助判別本地污染源影響,最後探討影響大氣能見度的PM2.5化學成分、氣象因子及污染來源。

研究結果顯示北部地區PM2.5質量濃度以春季最高,且在三月有高濃度發生,四個季節PM2.5化學成分都以SO42-為優勢物種,但夏季SO42-與修正OC濃度濃度差異不大,顯示夏季有機物影響相對重要;中部地區PM2.5質量濃度以秋季最高,SO42-在四個季節都是最主要成分濃度;南部地區PM2.5質量濃度以冬季最高,PM2.5化學成分濃度在四個季節也都以SO42-為主要成分。

PM2.5水溶性無機離子NO3-及Cl-為半揮發性成分,在北部、中部及南部測站NO3-揮發/未修正濃度比值除了冬季以外,其他三個季節都大於100%,且以夏季比值最大;Cl-揮發/ 未修正濃度比值則在四個季節都大於100%,如果不進行修正,會造成PM2.5揮發成分低估。比較PM2.5在低濃度(<35μg m-3)和高濃度(>35μg m-3)各成分占比,SO42-、OC、EC占比下降、NH4+維持不變、NO3-從6%增加到13%,Cl-從1%增加到2%,NO3-增加的幅度最為明顯,顯示降低NO3-和Cl-前驅產生源排放,有助於降低高濃度事件的發生。本文以濾紙採集揮發NH4+,發現揮發NH4+當量數通常大於揮發(NO3-+Cl-)當量數,推測可能有空氣中NH3(g)穿透denuder的現象。

PM2.5碳成分採集過程會發生有機碳揮發以及石英濾紙吸附有機氣體的現象,北、中、南部揮發性有機碳占有機碳的比例平均分別為9%、11、8%,北、中、南部石英濾紙吸附有機氣體的占有機碳比例平均為18、16、14%,代表如果不進行修正,會造成北、中、南有機碳成分平均高估9%、5%、6%。討論揮發離子濃度與環境最高溫度(Tmax)及修正後的PM2.5質量濃度的關係指出揮發NO3- 和NH4+與環境最高溫度及PM2.5濃度有關,揮發Cl-與環境最高溫相關性則不顯著。

利用PMF推估並以CPF輔助判別污染來源,北部、中部、南部測站都以二次硫酸鹽和二次硝酸鹽及氯鹽污染源類別貢獻最大,顯示台灣都市地區PM2.5空氣品質受到化石燃料燃燒排放的影響為最主要。大氣能見度的衰減以南部最為嚴重,整個採樣期間能見度平均為7.5±3.16 km,北部和中部能見度較南部好,採樣期間能見度平均分別為12.57±4.13 km、12.72±3.4 km,能見度以中部>北部>南部。將PM2.5化學成分、污染來源和氣象因子對大氣能見度進行多元迴歸分析,北、中、南能見度主要受水溶性無機離子和氣象因子的影響。

摘要(英) Atmospheric fine particulate matter (aerodynamic diameter less than or equal to PM2.5) will pose human health risk and cause atmospheric environmental change. In order to understand PM2.5 variation trends in Northern, Middle, and Southern Taiwan, this study summarized the results of PM2.5 mass and chemical components manually collected at Xinzhuang, Banqiao, Chungming, Qianzhen, Qianjin, and Siaogang, respectively from 2011 to 2015. The correctness of aerosol components is affected by volatilization of semi-volatile species and the adsorption of volatile organic gases during PM2.5 collection. In this study, a three-filter series was adopted to correct the interference of volatile species and affecting factors. Source apportionment of PM2.5 was conducted by using Positive Matrix Factorization (PMF) with the assistance of Conditional Probability Function (CPF) for local source evaluations. In the final step, the effects of meteorological factors and polluted sources were regressed on ambient visibility.

The results show that PM2.5 mass level was highest in March and SO42- was a predominant species in all seasons in Northern Taiwan. However, the corrected organic carbon (OC) competed with SO42- as the predominant component in summer which indicated organic compounds were important in summer. PM2.5 mass level is highest in autumn and SO42- is a predominant species in all seasons in Middle Taiwan. In addition, PM2.5 mass level is highest in winter and SO42- is a predominant species in all seasons in Southern Taiwan.

The volatilization of NO3- and Cl- are significant as the volatile ratio is greater than one in most occasions. The fraction of NO3- to PM2.5 mass level increased from 6% to 13% when PM2.5 mass level was low (<35μg m-3) as compared to high (>35μg m-3). In implies that the reduction of NO3- and Cl- precursor sources will help reduce high pollution events. Meanwhile, NH3(g) was found to penetrate from denuder adsorption as the equivalence of volatile NH4+ was greater than the equivalence of volatile (NO3-+Cl-) most of the time.

The fractions of volatile OC to retained OC level in the first filter were 9%, 11, and 8% in Northern, Middle, and Southern Taiwan, respectively. Moreover, the fractions of adsorbed volatile organic gases to retained OC level were 18, 16%, and 14% in Northern, Middle, and Southern Taiwan, respectively. If no correction was made, the OC fractions in retained OC mass level would overestimate 9%, 5%, and 6%, respectively. The volatilized NO3- and NH4+ are related to maximum ambient temperature and corrected PM2.5 mass level; however, the volatilized Cl- is not significantly affected by maximum ambient temperature.

The source apportionment using PMF and aided by using CPF showed that sources of secondary sulfate, nitrate, and chloride contributed greatly in Northern, Middle, and Southern Taiwan. It indicates fossil fuel combustion is the most significant source in affecting urban PM2.5 air quality. The degradation of atmospheric visibility is most serious in Southern Taiwan with visibility averaged at 7.5±3.16 km. In contrast, the visibilities in Northern and Middle Taiwan are better with values at 12.57±4.13 km and 12.72±3.4 km, respectively. From multiple regression analysis on ambient visibility by using PM2.5 chemical components, pollution sources, and meteorological factors, water-soluble inorganic ions and meteorological factors are found significant in affecting the visibility in Northern, Middle, and Southern Taiwan.

關鍵字(中) ★ 細懸浮微粒(PM2.5)
★ PM2.5化學成分
★ PM2.5化學成分揮發評估
★ PMF來源解析
★ 大氣能見度
關鍵字(英) ★ Fine particulate matter (PM2.5)
★ PM2.5 chemical components
★ Volatilization assessment of PM2.5 chemical components
★ PMF source apportionment
★ Ambient visibility
論文目次 摘要 III

Abstract III

目錄 VIII

表目錄 X

圖目錄 XII

第一章 前言 1

1.1研究緣起 1

1.2研究目的 3

第二章 文獻回顧 4

2.1細懸浮微粒(PM2.5)重要性之文獻 4

2.1.1 PM2.5對人體的危害 4

2.1.2台灣都會區PM2.5時間與空間濃度分布特性 5

2.1.3大氣中能見度與PM2.5的關係 8

2.2細懸浮微粒(PM2.5)形成來源 10

2.3氣膠化學組成 11

2.3.1 PM2.5氣膠水溶性離子組成 11

2.3.2 PM2.5氣膠碳成分組成 12

2.4受體模式正矩陣因子法PMF(Positive Matrix Factorization)應用 13

第三章 研究方法 15

3.1研究架構 15

3.2採樣地點與時間 16

3.2.1採樣地點 17

3.2.2採樣時間 19

3.3 R&P 2300氣膠成分分析採樣器 20

3.4 PM2.5質量和成分分析方法 24

3.4.1濾紙採樣前準備 24

3.4.2質量濃度秤重分析 25

3.4.3氣膠水溶性離子分析方法 26

3.4.4氣膠碳成分分析方法 27

3.4.5微粒揮發NO3-、NH4+、Cl-及OC補償方法 29

3.5正矩陣因子法PMF (Positive Matrix Factorization)操作 32

3.5.1輸入資料處理 33

3.5.2模式操作 34

3.6條件機率函數CPF (Conditional probability function)推估方法 38

第四章 結果與討論 39

4.1台灣北中南都會區PM2.5手動成分採樣濃度變化趨勢 39

4.1.1北部測站PM2.5成分濃度隨季節及時間的變化 40

4.1.2中部測站PM2.5成分濃度隨季節及時間的變化 44

4.1.3 南部測站PM2.5成分濃度隨季節及時間的變化 48

4.1.4 PM2.5成分占比與PM2.5質量濃度的關係 52

4.2 PM2.5半揮發成分揮發和影響因素 58

4.2.1揮發NH4+探討 58

4.2.2揮發性有機碳及吸附有機氣體Retained有機碳的關係 61

4.2.3 熱光學反射法(TOR)及熱光學透射(TOT)分析裂解碳的差異 64

4.3揮發離子濃度推估 69

4.3.1環境最高溫度(TMax)及修正後PM2.5質量濃度關係推估揮發NO3-濃度 69

4.3.2環境最高溫度(TMax)及修正後PM2.5質量濃度關係推估揮發Cl-濃度 73

4.3.3環境最高溫度(TMax)及修正後PM2.5質量濃度關係推估揮發NH4+濃度 77

4.4受體模式PMF推估北、中、南都會區PM2.5污染來源 81

4.4.1 北部測站PMF推估PM2.5污染來源 81

4.4.2 中部測站PMF推估 PM2.5污染來源 91

4.4.3 南部測站PMF推估 PM2.5污染來源 100

4.5台灣北、中、南都會區PM2.5濃度及氣象因子對大氣能見度影響 112

4.5.1 修正後PM2.5成分及天氣因子與能見度的擬合方程式 117

4.5.2 PM2.5污染因子對大氣能見度影響 123

第五章 結論與建議 128

5.1結論 128

5.2 建議 130

第六章 參考文獻 131

附錄1 各監測站周邊建設及四周環境位置 140

附錄2 北部測站PMF Bootstrap model結果 142

附錄3 中部測站PMF Bootstrap model結果 144

附錄4 南部測站PMF Bootstrap model結果 146

附錄5 CPF篩選因子貢獻濃度前15%日期 148

附錄6 口試委員意見答覆 151

參考文獻 Agarwal, A.K., Gupta, T., Kothari, A., 2011. Particulate emissions from biodiesel vs diesel fuelled compression ignition engine. Renewable and Sustainable Energy Reviews 15, 3278-3300.

Appel, B., Tokiwa, Y., Hsu, J., Kothny, E., Hahn, E., 1985. Visibility as related to atmospheric aerosol constituents. Atmospheric Environment (1967) 19, 1525-1534.

Bond, T.C., Doherty, S.J., Fahey, D., Forster, P., Berntsen, T., DeAngelo, B., Flanner, M., Ghan, S., Kärcher, B., Koch, D., 2013. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres 118, 5380-5552.

Brook, J.R., Dann, T.F., Burnett, R.T., 1997. The Relationship Among TSP, PM10, PM2. 5, and Inorganic Constituents of Atmospheric Participate Matter at Multiple Canadian Locations. Journal of the Air & Waste Management Association 47, 2-19.

Brook, R.D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., Luepker, R., Mittleman, M., Samet, J., Smith, S.C., Jr., Tager, I., Expert Panel on, P., Prevention Science of the American Heart, A., 2004. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation 109, 2655-2671.

Calvert, J.G., Lazrus, A., Kok, G.L., Heikes, B.G., Walega, J.G., Lind, J., Cantrell, C.A., 1985. Chemical mechanisms of acid generation in the troposphere. Nature 317, 27 - 35.

Cao, J.-j., Wang, Q.-y., Chow, J.C., Watson, J.G., Tie, X.-x., Shen, Z.-x., Wang, P., An, Z.-s., 2012. Impacts of aerosol compositions on visibility impairment in Xi′an, China. Atmospheric Environment 59, 559-566.

Cao, J., Lee, S., Ho, K., Fung, K., Chow, J.C., Watson, J.G., 2006. Characterization of roadside fine particulate carbon and its eight fractions in Hong Kong. Aerosol and Air Quality Research 6, 106-122.

Cao, J., Wu, F., Chow, J., Lee, S., Li, Y., Chen, S., An, Z., Fung, K., Watson, J., Zhu, C., 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi′an, China. Atmospheric Chemistry and Physics 5, 3127-3137.

Chan, Y.C., Simpson, R.W., Mctainsh, G.H., Vowles, P.D., Cohen, D.D., Bailey, G.M., 1999. Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques. Atmospheric Environment 33, 3237–3250.

Chang, L.T.-C., Tsai, J.-H., Lin, J.-M., Huang, Y.-S., Chiang, H.-L., 2011. Particulate matter and gaseous pollutants during a tropical storm and air pollution episode in Southern Taiwan. Atmospheric Research 99, 67-79.

Chang, S.-C., Chou, C.C.K., Chan, C.-C., Lee, C.-T., 2010a. Temporal characteristics from continuous measurements of PM2.5 and speciation at the Taipei Aerosol Supersite from 2002 to 2008. Atmospheric Environment 44, 1088-1096.

Chang, S.-C., Chou, C.C.K., Chen, W.-N., Lee, C.-T., 2010b. Asian dust and pollution transport—A comprehensive observation in the downwind Taiwan in 2006. Atmospheric Research 95, 19-31.

Chang, Y.-C., 2011. 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性. 國立中央大學環境工程研究所碩士論文.

Chen, S.-C., 2012. 台灣都市地區細懸浮微粒 (PM2. 5) 手動採樣分析探討. 國立中央大學環境工程研究所碩士論文.

Chen, W.N., Chen, Y.C., Kuo, C.Y., Chou, C.H., Cheng, C.H., Huang, C.C., Chang, S.Y., Roja Raman, M., Shang, W.L., Chuang, T.Y., Liu, S.C., 2014. The real-time method of assessing the contribution of individual sources on visibility degradation in Taichung. The Science of the total environment 497-498, 219-228.

Chow, J.C., Watson, J.G., Lowenthal, D.H., Solomon, P.A., Magliano, K.L., Ziman, S.D., Richards, L.W., 1993a. PM10 and PM2. 5 compositions in California′s San Joaquin Valley. Aerosol Science and Technology 18, 105-128.

Chow, J.C., Watson, J.G., Pritchett, L.C., Pierson, W.R., Frazier, C.A., Purcell, R.G., 1993b. The DRI Thermal/Optical Reflectance Carbon Analysis System: Description, Evaluation and Applications in U.S. Air Quality Studies. Atmospheric Environment 27, 1185-1201.

Chu, H.-J., Yu, H.-L., Kuo, Y.-M., 2012. Identifying spatial mixture distributions of PM2.5 and PM10 in Taiwan during and after a dust storm. Atmospheric Environment 54, 728-737.

Chuang, M.T., Chiang, P.C., Chan, C.C., Wang, C.F., Chang, E.E., Lee, C.T., 2008. The effects of synoptical weather pattern and complex terrain on the formation of aerosol events in the Greater Taipei area. The Science of the total environment 399, 128-146.

Dan, M., Zhuang, G., Li, X., Tao, H., Zhuang, Y., 2004. The characteristics of carbonaceous species and their sources in PM2.5 in Beijing. Atmospheric Environment 38, 3443-3452.

Deng, J., Xing, Z., Zhuang, B., Du, K., 2014. Comparative study on long-term visibility trend and its affecting factors on both sides of the Taiwan Strait. Atmospheric Research 143, 266-278.

Deng, X., Tie, X., Wu, D., Zhou, X., Bi, X., Tan, H., Li, F., Jiang, C., 2008. Long-term trend of visibility and its characterizations in the Pearl River Delta (PRD) region, China. Atmospheric Environment 42, 1424-1435.

Dwivedi, D., Agarwal, A., Sharma, M., 2006. Particulate emission characterization of a biodiesel vs diesel-fuelled compression ignition transport engine: A comparative study. Atmospheric Environment 40, 5586-5595.

Fang, G.-C., Chang, S.-C., 2010. Atmospheric particulate (PM10 and PM2.5) mass concentration and seasonal variation study in the Taiwan area during 2000–2008. Atmospheric Research 98, 368-377.

Fang, G.C., Lin, S.C., Chang, S.Y., Lin, C.Y., Chou, C.C., Wu, Y.J., Chen, Y.C., Chen, W.T., Wu, T.L., 2011. Characteristics of major secondary ions in typical polluted atmospheric aerosols during autumn in central Taiwan. Journal of environmental management 92, 1520-1527.

Gent, J.F., Koutrakis, P., Belanger, K., Triche, E., Holford, T.R., Bracken, M.B., Leaderer, B.P., 2009. Symptoms and medication use in children with asthma and traffic-related sources of fine particle pollution. Environ Health Perspect 117, 1168-1174.

Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G., Russell, G., Aleinov, I., Bauer, M., Bauer, S., 2005. Efficacy of climate forcings. Journal of Geophysical Research: Atmospheres (1984–2012) 110.

Harrison, R., Yin, J., 2005. Characterisation of particulate matter in the United Kingdom. Literature Review for Defra) Report for Defra, the National Assembly for Wales, the DoENI and the Scottish Executive.

Heintzenberg, J., 1989. Fine particles in the global troposphere a review. Tellus B 41, 149-160.

Hwang, I., Hopke, P.K., 2007. Estimation of source apportionment and potential source locations of PM2.5 at a west coastal IMPROVE site. Atmospheric Environment 41, 506-518.

Hyslop, N.P., 2009. Impaired visibility: the air pollution people see. Atmospheric Environment 43, 182-195.

ICRP, Protection, I.C.o.R., 1994. ICRP Publication 66: Human Respiratory Tract Model for Radiological Protection. Elsevier Health Sciences.

Jacobson, M.Z., 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695-697.

Jang, M., Lee, S., Kamens, R.M., 2003. Organic aerosol growth by acid-catalyzed heterogeneous reactions of octanal in a flow reactor. Atmospheric Environment 37, 2125-2138.

Jeong, C.-H., Evans, G.J., Dann, T., Graham, M., Herod, D., Dabek-Zlotorzynska, E., Mathieu, D., Ding, L., Wang, D., 2008. Influence of biomass burning on wintertime fine particulate matter: Source contribution at a valley site in rural British Columbia. Atmospheric Environment 42, 3684-3699.

Kagawa, J., 1985. Evaluation of biological significance of nitrogen oxides exposure. The Tokai journal of experimental and clinical medicine 10, 348-353.

Kampa, M., Castanas, E., 2008. Human health effects of air pollution. Environmental pollution 151, 362-367.

Kaneyasu, N., Ohta, S., Murao, N., 1995. Seasonal variation in the chemical composition of atmospheric aerosols and gaseous species in Sapporo, Japan. Atmospheric Environment 29, 1559-1568.

Kantpathak, R., Chan, C., 2005. Inter-particle and gas-particle interactions in sampling artifacts of PM in filter-based samplers. Atmospheric Environment 39, 1597–1607.

Kheirbek, I., Wheeler, K., Walters, S., Kass, D., Matte, T., 2013. PM and ozone health impacts and disparities in New York City: sensitivity to spatial and temporal resolution. Air Quality, Atmosphere & Health 6, 473-486.

Kim, E., Hopke, P.K., Edgerton, E.S., 2003. Source identification of Atlanta aerosol by positive matrix factorization. Journal of the Air & Waste Management Association 53, 731-739.

Kim, E., Hopke, P.K., Edgerton, E.S., 2004. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmospheric Environment 38, 3349-3362.

Kim Oanh, N.T., Thiansathit, W., Bond, T.C., Subramanian, R., Winijkul, E., Paw-armart, I., 2010. Compositional characterization of PM2.5 emitted from in-use diesel vehicles. Atmospheric Environment 44, 15-22.

Kim, Y.J., Kim, K.W., Kim, S.D., Lee, B.K., Han, J.S., 2006. Fine particulate matter characteristics and its impact on visibility impairment at two urban sites in Korea: Seoul and Incheon. Atmospheric Environment 40, 593-605.

Koutrakis, P., Sioutas, C., Ferguson, S., Wolfson, J., Mulik, J.D., Burton, R.M., 1993. Development and evaluation of a glass honeycomb denuder/filter pack system to collect atmospheric gases and particles. Environmental science & technology 27, 2497-2501.

Kuo, C.-Y., Cheng, F.-C., Chang, S.-Y., Lin, C.-Y., Chou, C.C.K., Chou, C.-H., Lin, Y.-R., 2013a. Analysis of the major factors affecting the visibility degradation in two stations. Journal of the Air & Waste Management Association 63, 433-441.

Kuo, C.Y., Lin, Y.R., Chang, S.Y., Lin, C.Y., Chou, C.H., 2013b. Aerosol characteristics of different types of episode. Environmental monitoring and assessment 185, 9777-9787.

Lee, C.-G., Yuan, C.-S., Chang, J.-C., Yuan, C., 2005. Effects of Aerosol Species on Atmospheric Visibility in Kaohsiung City, Taiwan. Journal of the Air & Waste Management Association 55, 1031-1041.

Lee, C.-T., Chuang, M.-T., Chan, C.-C., Cheng, T.-J., Huang, S.-L., 2006. Aerosol characteristics from the Taiwan aerosol supersite in the Asian yellow-dust periods of 2002. Atmospheric Environment 40, 3409-3418.

Lee, C., Chuang, M., Lin, N., Wang, J., Sheu, G., Wang, S., Huang, H., Chen, H., Weng, G., Hsu, S., 2011. The enhancement of biosmoke from Southeast Asia on PM 2.5 water-soluble ions during the transport over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.

Lee, Y.N., Springston, S., Jayne, J., Wang, J., Hubbe, J., Senum, G., Kleinman, L., Daum, P.H., 2014. Chemical composition and sources of coastal marine aerosol particles during the 2008 VOCALS-REx campaign. Atmospheric Chemistry and Physics 14, 5057-5072.

Li, R., Mittelstein, D., Kam, W., Pakbin, P., Du, Y., Tintut, Y., Navab, M., Sioutas, C., Hsiai, T., 2013. Atmospheric ultrafine particles promote vascular calcification via the NF-κB signaling pathway. Tzung Hsiai American Journal of Physiology 304, 362-369.

Lin, C.-Y., Chang, M.-L., Chuan, C.-W., 2009. Effects of aeolian dust on the fine airborne particles (PM10) at the estuary of Zhuoshui River. Journal of Soil and Water Conservation 41, 285-296.

Lin, C.-Y., Liu, S.C., Chou, C.C., Liu, T.H., Lee, C.-T., Yuan, C.-S., Shiu, C.-J., Young, C.-Y., 2004. Long-range transport of Asian dust and air pollutants to Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 15, 759-784.

Lin, C.-Y., Wang, Z., Chen, W.-N., Chang, S.-Y., Chou, C.C.K., Sugimoto, N., Zhao, X., 2007. Long-range transport of Asian dust and air pollutants to Taiwan: observed evidence and model simulation. Atmospheric Chemistry and Physics, 424-434.

Lin, C., Liu, S., Chou, C., Huang, S., Liu, C., Kuo, C., Young, C., 2005. Long-range transport of aerosols and their impact on the air quality of Taiwan. Atmospheric Environment 39, 6066-6076.

Liu, C.M., Young, C.Y., Lee, Y.C., 2006a. Influence of Asian dust storms on air quality in Taiwan. The Science of the total environment 368, 884-897.

Liu, W., Wang, Y., Russell, A., Edgerton, E.S., 2006b. Enhanced source identification of southeast aerosols using temperature-resolved carbon fractions and gas phase components. Atmospheric Environment 40, 445-466.

Loftus, C., Yost, M., Sampson, P., Arias, G., Torres, E., Vasquez, V.B., Bhatti, P., Karr, C., 2015. Regional PM2.5 and asthma morbidity in an agricultural community: a panel study. Environmental research 136, 505-512.

Malm, W.C., Pitchford, M.L., 1997. Comparison of calculated sulfate scattering efficiencies as estimated from size-resolved particle measurements at three national locations. Atmospheric Environment 31, 1315-1325.

Marilena Kampa, E.C., 2008. Effects of Pollution on Human Growth and Development: An Introduction. Journal of Physiological Anthropology 25, 103-112.

Middleton, P., Kiang, C., Mohnen, V.A., 1980. Theoretical estimates of the relative importance of various urban sulfate aerosol production mechanisms. Atmospheric Environment (1967) 14, 463-472.

Millero, F.J., Sohn, M.L., 1992. Chemical Oceanography. Boca Raton Fla, 531.

Murillo, J.H., Roman, S.R., Marín, J.F.R., Cardenas, B., 2013. Source Apportionment of PM2.5 in the Metropolitan Area of Costa Rica Using Receptor Models. Atmospheric and Climate Sciences 03, 562-575.

Norris, G., Duvall, R., Brown, S., Bai, S., 2014. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals & User Guide. U.S. Environmental Protection Agency, EPA/600/R-14/108, Office of Research and Development, Washington, DC 20460, U.S.A.

Ohta, S., Okita, T., 1990. A chemical characterization of atmospheric aerosol in Sapporo. Atmospheric Environment. Part A. General Topics 24, 815-822.

Paatero, P., 1997. Least squares formulation of robust non-negative factor analysis. Chemometrics and intelligent laboratory systems 37, 23-35.

Paatero, P., Tapper, U., 1994. Positive matrix factorization: A non‐negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111-126.

Pachauri, T., 2013. Characteristics and Sources of Carbonaceous Aerosols in PM2.5 during Wintertime in Agra, India. Aerosol and Air Quality Research.

Pandis, S.N., Harley, R.A., Cass, G.R., Seinfeld, J.H., 1992. Secondary organic aerosol formation and transport. Atmospheric Environment. Part A. General Topics 26, 2269-2282.

Park, S.S., Kim, Y.J., Fung, K., 2001. Characteristics of PM2.5 carbonaceous aerosol in the Sihwa industrial area, South Korea. Atmospheric Environment 35, 657–665.

Penttinen, P., Vallius, M., Tiittanen, P., Ruuskanen, J., Pekkanen, J., 2006. Source-specific fine particles in urban air and respiratory function among adult asthmatics. Inhalation toxicology 18, 191-198.

Pesek, R.D., Vargas, P.A., Halterman, J.S., Jones, S.M., McCracken, A., Perry, T.T., 2010. A comparison of asthma prevalence and morbidity between rural and urban schoolchildren in Arkansas. Annals of Allergy, Asthma & Immunology 104, 125-131.

Pilinis, C., Seinfeld, J.H., Grosjean, D., 1989. Water content of atmospheric aerosols. Atmospheric Environment (1967) 23, 1601-1606.

Pui, D.Y.H., Chen, S.-C., Zuo, Z., 2014. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 13, 1-26.

Qu, W.J., Wang, J., Zhang, X.Y., Wang, D., Sheng, L.F., 2015. Influence of relative humidity on aerosol composition: Impacts on light extinction and visibility impairment at two sites in coastal area of China. Atmospheric Research 153, 500-511.

Ram, K., Sarin, M.M., 2011. Day–night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: Implications to secondary aerosol formation. Atmospheric Environment 45, 460-468.

Ramadan, Z., Song, X.-H., Hopke, P.K., 2000. Identification of Sources of Phoenix Aerosol by Positive Matrix Factorization. Journal of the Air & Waste Management Association 50, 1308-1320.

Reff, A., Eberly, S.I., Bhave, P.V., 2007. Receptor modeling of ambient particulate matter data using positive matrix factorization: review of existing methods. Journal of the Air & Waste Management Association 57, 146-154.

Roessler, F.R.F.a.D.M., 1978. Carbon aerosol visibility vs particle size distribution. Applied Optics 17, 2612-2616.

Sahu, M., Hu, S., Ryan, P.H., Le Masters, G., Grinshpun, S.A., Chow, J.C., Biswas, P., 2011. Chemical compositions and source identification of PM(2).(5) aerosols for estimation of a diesel source surrogate. The Science of the total environment 409, 2642-2651.

Schwartz, J., Dockery, D.W., Neas, L.M., 1996. Is Daily Mortality Associated Specifically with Fine Particles? Journal of the Air & Waste Management Association 46, 927-939.

Seinfeld, J.H., Pandis, S.N., 2012. Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.

Shih, W.-Y., 2013. 台灣都會區細懸浮微粒 (PM2. 5) 濃度變化影響因子, 污染來源及其對大氣能見度影響. 國立中央大學環境工程研究所碩士論文.

Song, S., Lee, K., Lee, Y.M., Lee, J.H., Lee, S.I., Yu, S.D., Paek, D., 2011. Acute health effects of urban fine and ultrafine particles on children with atopic dermatitis. Environmental research 111, 394-399.

Tang, I.N., Munkelwitz, H.R., 1993. Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols. Atmospheric Environment. Part A. General Topics 27, 467-473.

Tao, J., Ho, K.-F., Chen, L., Zhu, L., Han, J., Xu, Z., 2009. Effect of chemical composition of PM2.5 on visibility in Guangzhou, China, 2007 spring. Particuology 7, 68-75.

Tsai, Y., Chen, C., 2006. Characterization of Asian dust storm and non-Asian dust storm PM2.5 aerosol in southern Taiwan. Atmospheric Environment 40, 4734-4750.

Tsai, Y., Kuo, S., 2005. PM aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan. Atmospheric Environment 39, 4827-4839.

Tsai, Y.I., Kuo, S.C., Lee, W.J., Chen, C.L., Chen, P.T., 2007. Long-term visibility trends in one highly urbanized, one highly industrialized, and two rural areas of Taiwan. The Science of the total environment 382, 324-341.

Tsuang, B.-J., Chen, C.-L., Lin, C.-H., Cheng, M.-T., Tsai, Y.-I., Chio, C.-P., Pan, R.-C., Kuo, P.-H., 2003. Quantification on the source/receptor relationship of primary pollutants and secondary aerosols by a Gaussian plume trajectory model: Part II. Case study. Atmospheric Environment 37, 3993-4006.

USEPA, 2009b. Integrated science assessment for particulate matter (final report). EPA/600/R-08/139F.

Wall, S.M., John, W., Ondo, J.L., 1988. Measurement of aerosol size distributions for nitrate and major ionic species. Atmospheric Environment (1967) 22, 1649-1656.

Watson, J.G., 2002. Visibility: Science and Regulation. Journal of the Air & Waste Management Association 52, 628-713.

Watson, J.G., Chow, J.C., 2001. Source characterization of major emission sources in the Imperial and Mexicali Valleys along the US/Mexico border. Science of the Total Environment 276, 33-47.

Wei, H.-c., 2014. 台灣北, 中′ 南部細懸浮微粒 (PM2. 5) 儀器比對成分分析與來源推估. 國立中央大學環境工程研究所碩士論文.

Wen, C.-C., Yeh, H.-H., 2010. Comparative influences of airborne pollutants and meteorological parameters on atmospheric visibility and turbidity. Atmospheric Research 96, 496-509.

Wu, P.-M., Okada, K., 1994. Nature of coarse nitrate particles in the atmosphere—a single particle approach. Atmospheric Environment 28, 2053-2060.

Xu, H., Guinot, B., Shen, Z., Ho, K., Niu, X., Xiao, S., Huang, R.-J., Cao, J., 2015. Characteristics of Organic and Elemental Carbon in PM2.5 and PM0.25 in Indoor and Outdoor Environments of a Middle School: Secondary Formation of Organic Carbon and Sources Identification. Atmosphere 6, 361-379.

Yao, X., Chan, C.K., Fanga, M., Cadle, S., Chanc, T., Patricia Mulawa, Kebin He, Ye, B., 2002. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment 36, 4223–4234.

Yao, X., Zhang, L., 2012. Chemical processes in sea-salt chloride depletion observed at a Canadian rural coastal site. Atmospheric Environment 46, 189-194.

Yu, L., 2013. Characterization and Source Apportionment of PM2.5 in an Urban Environment in Beijing. Aerosol and Air Quality Research.

Zhang, Q., Quan, J., Tie, X., Li, X., Liu, Q., Gao, Y., Zhao, D., 2015. Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China. The Science of the total environment 502, 578-584.

Zhang, R., Bian, Q., Fung, J.C.H., Lau, A.K.H., 2013. Mathematical modeling of seasonal variations in visibility in Hong Kong and the Pearl River Delta region. Atmospheric Environment 77, 803-816.

Zhang, R., Suh, I., Zhao, J., Zhang, D., Fortner, E.C., Tie, X., Molina, L.T., Molina, M.J., 2004. Atmospheric new particle formation enhanced by organic acids. Science 304, 1487-1490.

Zhang, S., 2015. Comparison of Filtration System and a Honeycomb Denuder-Based System for Sampling PM2.5 in Tianjin, China. Aerosol and Air Quality Research.

Zhao, W., Hopke, P.K., 2004. Source apportionment for ambient particles in the San Gorgonio wilderness. Atmospheric Environment 38, 5901-5910.

Zhao, W., Hopke, P.K., 2006. Source identification for fine aerosols in Mammoth Cave National Park. Atmospheric Research 80, 309-322.

Zhu, C.-S., Chen, C.-C., Cao, J.-J., Tsai, C.-J., Chou, C.C.K., Liu, S.-C., Roam, G.-D., 2010. Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel. Atmospheric Environment 44, 2668-2673.

Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999. Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmospheric Environment 33, 4223-4233.

江勝偉, 2007. 氣象因子與大氣懸浮微粒含碳量變異關聯性研究. 成功大學環境工程學系學位論文, 1-110.

指導教授 李崇德 審核日期 2015-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明