博碩士論文 102326021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.188.229.120
姓名 彭瀚萱(Han-Hsuan Peng)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 NSR觸媒結合電漿技術去除NOx之研究
(Combining catalysis and non-thermal plasma over a perovskite-like catalyst for NOx storage and reduction)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 柴油引擎因其高於汽油引擎的燃油效率與較低的二氧化碳排放優勢下,逐漸成為未來趨勢的車種。且柴油引擎所排放的氮氧化物佔所有移動污染源65%,而此一污染物更是柴油引擎所排放之尾氣中,最為人所重視的污染物之一,因此,世界各國無一不積極投入氮氧化物的改善技術。因此本研究擬研發一低溫、低成本、高效率之NSR (NOX Storaged Reduction)觸媒並結合非熱電漿技術針對柴油引擎中之氮氧化物去除進行討論。本研究利用以Sr2MnO4觸媒作為基底,藉鉀、鈷及BaO/Al2O3的添加進行改質,並比較改質之觸媒其活性及物性。研究結果顯示,SrKMn0.8Co0.2O4/BaO/Al2O3觸媒於NO濃度500 ppm、反應溫度300oC、空間流速48000 h-1、氧氣含量5%下具有最佳之NOx吸附能力(209 µmol/g),但當氧氣含量提高至10%時,觸媒之NOx吸附能力有些微下降,表示觸媒在氧氣含量過多的條件下會使觸媒在短時間內將大量的NO氧化為NO2,進而使觸媒的吸附量下降。而CO2和H2O(g)的添加亦會降低觸媒吸附NOx之能力。在NOx電漿還原方面,當氣體流量 50 sccm,空間流速2000 h-1,施加電壓 6 kV,放電頻率 6 kHz時,放電時間15 sec即可將80%的NOx還原成N2;另外,分別添加H2、CO、CH4及H2O於電漿系統中,對於NOx轉化率並無顯著提升,由此結果顯示,此系統能於不添加還原劑時即可達到良好的NOx去除效率。
摘要(英) Lean-burn engine is a promising technology due to its high efficiency, reliability and durability. However, more nitrogen oxides (NOx) are formed under lean-burn condition. NOx not only causes various adverse effects such as acid rain, photochemical smog, deterioration of water quality and visibility, but also harms human health. Hence, how to effectively reduce NOx emissions at a reasonable cost has become an emerging issue. Several methods have been developed for NOx removal, such as direct decomposition, selective catalytic reduction (SCR), and selection non-catalytic reduction (SNCR). In this study, a new NOx storage and reduction (NSR) system is developed for NOx removal by combining catalyst and non-thermal plasma technology (DBD). In this hybrid system, catalyst is mainly used for oxidizing NO to NO2 and storing them on the surface, while non-thermal plasma is applied as a desorption/ reduction step for converting NO2 into N2. Previous study indicates that the amount of stored NOx is the rate-limiting step for the NSR system. The catalyst with a high NOx storage capacity and good reduction performance need to be developed. In this study, SrKMn0.8Co0.2O4 is supported on BaO/Al2O3 to prepare the catalyst. The adsorption experiment was conducted with the gas stream containing 500 ppm NO and 5% O2 with N2 as carrier gas. The results indicate that NOx is effectively adsorbed on the catalyst and converted to N2 at room temperature by applying non-thermal plasma catalysis (η = 80%) and adding appropriate reducing agent can improve it to 84%. The results show that this hybrid system is promising in removing NOx from gas streams.
關鍵字(中) ★ 氮氧化物
★ NSR
★ 非熱電漿
★ Perovskite 型觸媒
關鍵字(英) ★ NOx storage
★ Perovskite catalyst
★ Non-thermal plasma
★ NSR
論文目次 摘要 I

Abstract II

目錄 III

表目錄 VII

圖目錄 IX

第一章 前言 1

1-1研究緣起 1

1-2研究目的 5

第二章 文獻回顧 6

2-1 氮氧化物的特性、來源與危害 6

2-1-1 氮氧化物的基本特性 6

2-1-2 氮氧化物的來源 8

2-1-3 氮氧化物對健康與環境的影響 8

2-2 氮氧化物生成機制 10

2-3 氮氧化物控制技術 13

2-3-1 燃燒前處理 13

2-3-2 燃燒程序修正 14

2-3-3 燃燒後處理 15

2-4 氮氧化物儲存與還原法 21

2-4-1 NSR觸媒回顧 21

2-4-2 NSR觸媒理論機制 25

2-5 Perovskite型觸媒 26

2-5-1 Perovskite oxide型觸媒介紹 26

2-5-2 Perovskite oxide型觸媒應用於NSR反應 28

2-6 電漿 29

2-6-1 電漿生成原理 29

2-6-2 電漿產生方式 33

2-7 氣相吸附 38

2-7-1 氣相吸附原理 38

2-7-2 影響吸附之因子 40

2-7-3 貫穿曲線 42

2-8 電漿結合NSR技術 43

第三章 研究方法與設備 45

3-1 研究流程與架構 45

3-2 觸媒製備 46

3-2-1 氧化試驗之觸媒製備 46

3-2-2 吸附試驗之觸媒製備 47

3-3 實驗設備 48

3-3-1 氣體供應與試藥 50

3-3-2 反應器 51

3-3-3 實驗儀器設備 52

3-4 研究方法 55

3-4-1 NO氧化實驗 55

3-4-2 NOx吸附實驗 56

3-4-3 NOx電漿結合觸媒吸附/還原實驗 57

3-4-4 NOx程溫脫附試驗 59

3-4-5 數據計算 60

3-5 儀器原理及操作條件 61

第四章 結果與討論 65

4-1 製備條件對觸媒活性之影響 65

4-1-1 鍛燒溫度對Sr2MnO4/BaO/Al2O3觸媒成相分析 65

4-1-2 鍛燒溫度對Sr2MnO4/BaO/Al2O3觸媒晶格分析 67

4-1-3 鍛燒溫度對Sr2MnO4/BaO/Al2O3觸媒表面形態分析 68

4-1-4 不同鍛燒溫度對Sr2MnO4/BaO/Al2O3觸媒吸附能力之影響 70

4-2 以Cu、Co部分取代Mn對Sr2MnO4活性之影響 72

4-2-1 以Cu、Co部分取代Mn之XRD晶相 72

4-2-2 以Cu、Co部分取代Mn 對Sr2MnO4觸媒氧化能力之影響 73

4-3 以K部分取代Sr對Sr2Mn0.8Co0.2O4/BaO/Al2O3活性之影響 74

4-3-1 BET氮氣吸脫附測試 74

4-3-2 SEM分析 75

4-3-3 XRD晶相分析 76

4-3-4 XPS成相分析 77

4-3-5 以K部分取代Sr對Sr2Mn0.8Co0.2O4吸附能力之影響 77

4-4 吸附能力實驗 79

4-4-1 吸附溫度之影響 79

4-4-2 氧氣含量之影響 80

4-4-3 空間流速之影響 81

4-4-4 水氣之影響 82

4-4-5 二氧化碳之影響 83

4-5 熱還原實驗 84

4-5-1 溫度對NOx轉化率之影響 84

4-5-2 NOx程溫還原實驗 85

4-6 電漿還原實驗 86

4-6-1 輸入電壓對 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒轉化率之影響 86

4-6-2 輸入頻率對 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒轉化率之影響 89

4-6-3 放電時間對 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒轉化率之影響 91

4-6-4 添加不同比例之H2、CO及CH4對SrKMn0.8Co0.2O4/BaO/Al2O3觸媒轉化率之影響 93

4-6-5 添加不同比例之水氣對SrKMn0.8Co0.2O4/BaO/Al2O3觸媒轉化率之影響 97

4-6-6 同時添加H2、CO、CH4、H2O(g)對SrKMn0.8Co0.2O4/BaO/Al2O3觸媒轉化率之影響 99

4-6-7 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒再生性試驗 100

4-7 反應動力探討 101

第五章 結論與建議 104

5-1結論 104

5-2建議 105

參考文獻 106

表2-1 NO、NO2之物化特性 7

表2-2 各種氮氧化物(NOx)的來源(Bosch et al., 1988) 8

表2-3 氮氧化物對健康與環境造成的衝擊(U.S. EPA, 1998) 9

表2-4 目前商業化的燃燒程序改善方式 19

表2-5 NSR觸媒文獻回顧 23

表2-6 非熱電漿反應機制 30

表2-7 熱電漿與非熱電漿之特性 33

表2-8 非熱電漿技術之特性比較 36

表2-9 物理吸附與化學吸附之差異 40

表3-1 本研究使用之氣體種類、濃度規格、用途與供應廠商 50

表3-2 本實驗所使用之藥品 51

表3-3 NO氧化實驗操作參數 55

表3-4 NO吸附實驗操作參數 56

表3-5 電漿結合觸媒吸附/還原實驗操作參數 57

表3-6 NOx程溫脫附實驗 59

表4-1 觸媒之BET比表面積 75

表4-2 不同溫度下之NOx轉化率 85

表4-3 輸入電壓對 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒之NOx轉化率之影響 88

表4-4 輸入頻率對 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒之NOx轉化率之影響 90

表4-5 放電時間對 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒之NOx轉化率之影響 92

表4-6 添加不同H2濃度對 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒之NOx轉化率之影響 96

表4-7 添加不同CO濃度對 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒之NOx轉化率之影響 96

表4-8 添加不同CH4濃度對 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒之NOx轉化率之影響 97

表4-9 添加H2O對 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒轉化NOx之影響 98

表4-10 同時添加H2、CO、CH4、H2O(g)對 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒之NOx轉化率之影響 99

表4-11 SrKMn0.8Co0.2O4/BaO/Al2O3與文獻之活化能比較 103

圖2-1 三種NOx形成之機制分布 10

圖2-2 燃料生成NOx機制形成主要步驟 12

圖2-3 瞬時NOx形成主要步驟 13

圖2-4 過量空氣與NOx關係 14

圖2-5 選擇性觸媒還原法處理程序示意圖 17

圖2-6 NH3-NO之SNCR反應路徑 18

圖2-7 NSR觸媒機制 26

圖2-8 Perovskite oxide型金屬氧化物結構 27

圖2-9 電漿的組成 29

圖2-10 非熱電漿中各類碰撞反應之時間尺度 32

圖2-11 電漿反應器形式 37

圖2-12 貫穿曲線示意圖 43

圖3-1 研究流程規劃 46

圖3-2 NOx吸附/氧化實驗 48

圖3-3 電漿結合觸媒吸附/還原系統 49

圖3-4 反應器(a)吸附床反應器;(b)DBD反應器 52

圖4-1 Sr2MnO4/BaO/Al2O3觸媒以不同鍛燒溫度之XPS圖(a)Sr3d、(b)Mn2p 67

圖4-2 Sr2MnO4/BaO/Al2O3觸媒以不同鍛燒溫度之XRD圖 68

圖4-3 鍛燒溫度(a) 500oC、(b) 600oC、(c) 700oC下觸媒表面形態分析 69

圖4-4 (a)鍛燒溫度500oC,(b)鍛燒溫度600oC,(c)鍛燒溫度700oC下觸媒之吸附能力 71

圖4-5 (a) Sr2Mn0.8Co0.2O4 、(b) Sr2Mn0.8Cu0.2O4 、(c) Sr2MnO4觸媒之XRD圖譜 73

圖4-6 觸媒氧化能力 74

圖4-7 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒於放大倍率10k及20k之SEM 75

圖4-8 Sr2Mn0.8Co0.2O4/BaO/Al2O3觸媒於放大倍率10 k及20 k之SEM 76

圖4-9 (a) SrKMn0.8Co0.2O4/BaO/Al2O3,(b) Sr2Mn0.8Co0.2O4/BaO/Al2O3觸媒XRD晶相 76

圖4-10 (a) SrKMn0.8Co0.2O4/BaO/Al2O3,(b) Sr2Mn0.8Co0.2O4/BaO/Al2O3觸媒XRD晶相 77

圖4-11 (a) Sr2Mn0.8Cu0.2O4/BaO/Al2O3,(b) SrKMn0.8Co0.2O4/BaO/Al2O3對NOx之吸附能力 79

圖4-12 SrKMn0.8Co0.2O4/BaO/Al2O3隨溫度變化之NOx吸附曲線 80

圖4-13 SrKMn0.8Co0.2O4/BaO/Al2O3隨氧氣含量變化之NOx吸附曲線 81

圖4-14 SrKMn0.8Co0.2O4/BaO/Al2O3隨空間速度變化之NOx吸附曲線 82

圖4-15 SrKMn0.8Co0.2O4/BaO/Al2O3隨水氣含量變化之NOx吸附曲線圖 83

圖4-16 SrKMn0.8Co0.2O4/BaO/Al2O3隨CO2含量變化之NOx吸附曲線圖 84

圖4-17 SrKMn0.8Co0.2O4/BaO/Al2O3之程溫脫附NOx曲線圖 86

圖4-18 輸入電壓對 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒轉化率之影響 87

圖4-19 輸入電壓對放電功率之影響 88

圖4-20 輸入電壓對能量效率之影響 89

圖4-21 輸入頻率對 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒轉化率之影響 90

圖4-22 放電時間對 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒轉化率之影響 91

圖4-23 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒之等溫吸附曲線 93

圖4-24 添加H2、CO、CH4對 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒還原能力之影響 94

圖4-25 添加H2O(g)對 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒還原能力之影響 98

圖4-26 重複吸附/還原對 SrKMn0.8Co0.2O4/BaO/Al2O3觸媒之影響 100

圖4-27 放大倍率250 k之(a)電漿前,(b)電漿後之TEM 101

圖4-28 不同溫度下以第一型Arrhenius方程式求取之速率常數 103







參考文獻 Bosch H., and Janssen F., Formation and control of nitrogen oxides, Catalysis Today, 2, 369-379, 1988.

Bhatia D., Harold M. P., Balakotaiah V., Modeling the effect of Pt dispersion and temperature during anaerobic regeneration of a lean NOx trap catalyst, Catalysis Today, 151, 314-329, 2010/

Casapua M., Grunwaldt, J.,Maciejewski, M., Wittrock, M., U. Gobel, A.

Baiker., Formation and stability of barium aluminate and cerate in NOx

storage-reduction catalysts, Applied Catalyst B: Environmental, 63, 232-242, 2006.

Corma A., Fornes V., Selective catalytic reduction of NOx on Cu-beta zeolites, Applied Catalysis B: Environmental, 11, 233-243, 1997.

Chen Z., Wang X., Wang Y., Wang R., Pt–Ru/Ba/Al2O3–Ce0.33Zr0.67O2: An effective catalyst for NOx storage and reduction, Journal of Molecular Catalysis A: Chemical, 396, 8-14, 2015.

Chapman B., Glow Discharge Processes, A Wiley-Interscience Publication, 297-342, 1980.

Goldschmidt V. M., Geochemical distribution principles, Shrifter Nofke Videnskaps-Akadmi Oslo I, 1926.

Epling W. S., Parks J.E., Cambell G.C., Yezerets A., Currier N. W., Cambell L.E., Further evidence of multiple NOx sorption sites on NOx storage/reduction catalysts, 96, 1-2, 21-30, 2004.

Eisner A. D., Wiener, R. W., Discussion and evaluation of the volatility test forequivalency of other methods to the federal reference method for fine particulate matter, Aerosol Science and Technology, 36, 433, 2002.

Fogler H. S., Elements of Chemical Reaction Engineering, 3rd ed, Prentice-Hall Inc, 1999.

Flagan R.C., Seinfeld J.H., Fundamentals of air pollution engineering.PrenticeHall, 103, 1988.

Fenimore C. P., Formation of nitric oxide from fuel nitrogen in ethylene flames , Combustion and Flame, 19, 289-296, 1972.

Glarborg P., Jensen A. D., Fuel nitrogen conversion in solid fuel fired Systems, Progress in Energy and Combustion Science, 29(2), 89-113, 2003.

Hodjati S., Vaezzadeh K., Petit C., Pitchon., Kiennemann A., Absorption/desorption of NOx process on perovskites: performances to remove NOx from a lean exhaust gas, Applied Catalysis B: Environmental, 26, 5–16, 2005.

James D., Fourré E., Ishii M., Bowker M., Catalytic decomposition/ regeneration of Pt/Ba(NO3)2 catalysts: NOx storage and reduction, Applied Catalyst B: Environmental, 45, 147-159, 2003.

Jahanmiri A., Rahimpour M. R., Mohamadzaddeh M., Hooshmand N., Taghvaei H., Naphtha cracking through a pulsed DBD plasma reactor: Effect of applied voltage, pulse repetition frequency and electrode material, Chemical Engineering Journal, 191, 416-425, 2012.

Kim H. H., Nonthermal plasma processing for air-pollution control : A historical review, current issues and future prospects, Plasma Processes and Polymers, 1, 91-110, 2004.

Liu G., Gao P. X., A review of NOx storage/reduction catalysts: mechanism, materials and degradation studies, Catalysis Science Technology, 1, 552-568, 2011.

Lindstedt R. P., Lockwood, F. C. and Selim, M. A., Detailed kinetic modelling of chemistry and temperature effect on ammonia oxidation, Combustion Science Technology, 99, 253-276, 1994.

López-Suárez F. E., Illán-Gómez M. J., Bueno-López A., Anderson J. A., NOx storage and reduction on a SrTiCuO3 perovskite catalyst studied by operando DRIFTS, Applied Catalysis B: Environmental, 104, 261–267, 2011.

Li Q., Meng M., Dai F., Zha Y., Xie Y., Hu T., Zhang J., Multifunctional hydrotalcite-derived K/MnMgAlO catalysts used for soot combustion, NOx storage and simultaneous soot–NOx removal, Chemical Engineering Journal, 32, 106–112, 2012.

Li Z., Meng M., Li Q., Xie X., Hu T., Zhang J., Fe-substituted nanometric La0.9K0.1Co1−xFexO3−ı perovskite catalysts used for soot combustion, NOx storage and simultaneous catalytic removal of soot and NOx, Chemical Engineering Journal, 164, 98-10, 2010.

Lindohlm A., Currier N. W., Dawody J., Hidayat A., Li J., Yezerets A., Olsson L., The influence of the preparation procedure on the storage and regeneration behavior of Pt and Ba based NOx storage and reduction catalysts, Applied Catalysis B: Environmental, 88, 240-248, 2009.

Lima, S.M., Assaf, J.M., Peña, M.A., Fierro, J.L.G., Structural features of La1−xCexNiO3 mixed oxides and performance for the dry reforming of methane, Applied Catalysis A: General, 311, 94-104, 2006.

Miller J. A., Browman C. T., Mechanism and modeling of nitrogen chemistry in combustion, Progress in Energy and Combustion Science, 15, 287-338, 1989.

Matsumoto S., DeNOx catalyst for automotive lean burn engine, Catalyst Today, 90, 26-30, 2004.

Mitsuharu K., Film deposition by plasma techniques, Springer-Verlag Berlin Heidelberg, 11-48, 1992.

More P.M., Nguyen D.L., Granger P., Dujardin C., Dongare M. K., Umbarkar S. B., Activation by pretreatment of Ag–Au/Al2O3 bimetallic catalyst to improve low temperature HC-SCR of NOx for lean burn engine exhaust, Applied Catalysis B: Environmental, 174, 145-156, 2015.

Mulla S. S., Chaugule S. S., Yezerets A., Currier N. W., Delgass W. N., Ribeiro F.H., Regeneration mechanism of Pt/BaO/Al2O3 lean NOx trap catalyst with H2, Catalysis Today, 136, 136-145, 2008.

Nehra V., Kumar A., Dwivedi H. K., Atmospheric non-thermal plasma source, International Journal of Engineering, 2, 53-68, 2008.

Otakar, S., Industrial separators for gas cleaning, Wiley-Interscience Publication, 360-379, 1979.

Prathap C., A Ray., Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition, Combustion and Flame, 155, 145-160, 2008.

Pereñíguez R., González-DelaCruz V.M., Holgado J.P., Caballero A., Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts. Applied Catalysis B: Environmental, 93, 346-353, 2010.

Rico-Pérez V., Bueno-López A., Kim D.J., Ji Y., Crocker M., Pt/CexPr1−xO2 (x = 1 or 0.9) NOx storage–reduction (NSR) catalysts, 163, 313-322, 2015.

Raizer Y. P., Allen J. E., Kisin V. I., Gas DischargePhysics, Springer-Verlag Berlin Heidelberg, 8-33, 1991.

Shi C., Zhang Z. C., Crocker M., Xu L., Wang C. Y., Au C. Y., Zhu A. M., Non-thermal plasma-assisted NOx storage and reduction on a LaMn0.9Fe0.1O3 perovskite catalyst, Catalysis Today, 211, 96-103, 2013.

Stubenberger G., R Scharler, Experimental investigation of nitrogen species release from different solid biomass fuels as abasis for release models, Fuel ,87, 793-806, 2008.

Skreiberg Q., Kilpinen P., Glarborg P., Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor, Combustion and Flame, 136, 501-508, 2004.

Su Y., Kabin K. K., Harold M. P., Amiridis M. D., Reactor and in situ FTIR studies of Pt/BaO/Al2O3 and Pd/BaO/Al2O3 NOx storage and reduction (NSR) catalysts, Applied Catalysis B: Environmental, 71, 207-215, 2007.

Takahashi N., Yamazaki K., Sobukawa H., Shinjoh H., The low-temperature performance of NOx storage and reduction catalyst, Applied Catalyst B: Environmental, 70, 2007.

Takahara Y., Ikeda A., Nagata M., Sekine Y., Low-temperature NO decomposition in humidified condition using plasma–catalyst system, Catalysis Today, 211, 44–52, 2013.

Teraoka Y., Harada T. Kagawa S., Reaction mechanism of direct decomposition of nitric oxide over Co-and Mn-based perovskite-type oxides, Journal of Chemistry Society, 94, 1887-1891, 1998.

Thomas A., Zhu J., Perovskite-type mixed oxides as catalytic material for NO removal, Applied Catalysis B: Environmental, 92, 225-233, 2009.

Topsoe N. Y., Dumesic J. A., Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia, Journal of Catalysis, 151, 226-241, 1995.

Teng H., Hsu Y. F., Tu Y. T., Reduction of NO with NH3 over carbon catalysts-the influence of carbon surface structures and the global kinetics, Applied Catalysis B: Environmental, 20, 145-154, 1999.

Trybal R. E., Mass Transfer Operation, McGraw-Hill 3rd, 624, 1980.

Voorhoeve R. J. H., Perovskite-related oxides as oxidation-reduction catalysts, Advanced Material in Catalysis, 129-180, 1977.

Vandooren J., Brian J., Tiggelen V. Comparison of experimental and calculate structure of an ammonia-nitric oxide flame importance of the NH2 + NO reaction, Combustion and Flame, 98, 402-401, 1994.

Vandenbroucke A.M., Morent R., Geyter N.,Leys C., Non-thermal plasmas for non-catalytic and catalytic VOC abatement. Journal of Hazardous Materials, 195, 30-54, 2011.

Wang W., Herreros J. M., Tsolakis A., York A. P. E., Increased NO2 concentration in the diesel engine exhaust for improved Ag/Al2O3 catalyst NH3-SCR activity, Chemical Engineering Journal, 270, 582–589, 2015.

Wood S. C., Select the right NOx control technology, Chemical Engineering Progress, 32-38, 1994.

Waibel R. T., Ultralow NOx burners for industrial process heaters, John Zink company, 19-22, 1993.





Xing N., Wang X., Zhang A., Liu Z., Guo X., Eley-Rideal mode of formamide species formation in selective catalytic reduction of NOx by C2H2 over ferrierite based catalysts, Catalysis Communications, 9, 2117-2120, 2008.



Yu Q. Q., Wang H., Liu T., Xiao L. P., Jiang X. Y., Zheng X. M., high-efficiency removal of NOx using a combined adsorption-discharge plasma catalytic process, Environmental Science & Technology, 46, 2337–2344, 2012.

Yang X., Zhu J., Xu X., Wei K., Active site structure of NO decomposition on Perovskite-like oxides:An investigation from experiment and density functional theory, The Journal of Physical Chemistry, 111, 1487-1490, 2007.

Yuan J. W., Prediction of NOx Emissions in Recovery Boilers - An Introduction to NOx Module, 1999.

You R., Zhang Y., Liu D., Meng M., Jiang Z., Zhang S., Huang Y., A series of ceria supported lean-burn NOx trap catalysts LaCoO3/K2CO3/CeO2 using perovskite as active component, Chemical Engineering Journal, 260, 357-367, 2015.

Yentekakisa I. V., Tellou V., Botzolaki G., Rapakousios I. A., A comparative study of the C3H6 + NO + O2, C3H6 + O2 and NO + O2 reactions in excess oxygen over Na-modified Pt/γ-Al2O3 catalysts, Applied Catalyst B: Environmental, 56, 229-232, 2005.

Yokoi Y., Uchida H., Catalytic activity of perovskite-type oxide catalysts for direct decomposition of NO:Correlation between cluster model calculations and temperature-programmed desorption experiments, Catalysis Today, 42, 167-174, 1998.

Zeldovich Y. B., The oxidation of nitrogen in combustion and explosions, Acta Physicochimica USSR, 21, 4, 577-268, 1947.

Zhang A. S., Chen B. B., Wang X. K., Xu L., Au C., Shi C., Crocker M., NOx storage and reduction properties of model manganese-based lean NOx trap catalysts, Applied Catalysis B: Environmental, 165, 232-244 , 2015.

行政院環境保護署空氣污染物排放清冊 [TEDS8.1 版] (2010)

蘇崇毅,「蜂巢狀波洛斯凱特型觸媒用於合成氣燃燒之研究」,國立成功大學化學工程研究所,臺南,台灣,2007。

空氣污染防治專責人員教材,「氣狀污染物防治」,環境保護署環境 護人員訓練所,2011。

張君正、張木彬,「氮氧化物生成機制與控制技術」,工業污染防治,第13卷,第2期,1994。

楊士朝,「以低溫電漿去除氮氧化物之可行性研究」,國立中央大學環境工程研究所,碩士論文,中壢,1998。

沈孝宗,「以波洛斯凱特型觸媒催化NO還原反應之比較研究」,國立成功大學化學工程研究所,臺南,台灣,1998。

高正雄,「電漿化學」,復漢出版社,台南,1991。

沈克鵬,「揮發性有機物收集及控制介紹」,工業技術研究院綠環所,2010。

黃晴澤,「以非電漿結合吸附劑處理C3F8之研究」,碩士論文,國立中央大學環境工程研究所,中壢,2009年。

許菁珊,「沸石對於光電產業揮發性有機化合物之吸/脫附研究」,碩士論文,國立中山大學環境工程研究所,高雄,2005。

蔣光榮,「NSR觸媒活性與成車應用之研究」,國立中央大學環境工程研究所,中壢,台灣,2009。

赤崎正則、村岡克紀、渡邊征夫、狫原建治,「電漿工學的基礎」,復文書局,9-44頁,1990年。

楊逸楨,「土壤無機相對有機污染物吸附特性之研究」,國立中央大學環境工程研究所,碩士論文,中壢,2007。

指導教授 張木彬(Moo-been Chang) 審核日期 2015-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明