摘要(英) |
This study, in order to regenerate the decontamination of soil made of fine aggregate, replace the natural fine aggregate feasibility of applying cement mortar , divided into three stages of the experiment: the first phase of a water-solid ratio 0.35,0.4,0.5,0.6 , decontamination of soil and cement bonded ratio was 0,2,4,6,8,10, replace slag cement powder volume was 40%, 50%, 60%, in addition, to reduce the mixing water to maintain the slurry simultaneously and increases the incorporation of slag powder after mixing uniformity, so the incorporation of strong plasticizer of 0.5%, 0.8%, production of recycled fine aggregates within 1% in the laboratory. After the second phase of election-related tests compared with adaptation as renewable nature than fine aggregate and the basic physics of detection. The third stage in the lab had made of recycled fine aggregates partially replace natural fine aggregate production of cement blocks, to discuss the basic nature and cost of recycled fine aggregate manufacturing, for the follow-up of the study for reference.
The results show: 1. As recycled fine aggregates with higher water absorption characteristics, the pellets made from recycled fine water absorption of about 18 to 30%. 2. When combined with the decontamination of soil cement ratio is increased, the increase in the intensity decreased significantly more water to solid ratio; solid water ratio is fixed, the compressive strength of recycled fine aggregate blended cement mortar powder due to slag replace cement ratio and add a strong increase in the proportion of plasticizer significantly increased; the level of water to solid ratio of recycled fine aggregate blended cement mortar block compressive strength, will be subject to the decontamination of soil and cement powder combined ratio and replace furnace cement ratio and the added amount of strength and plasticity agent. 3. single laboratory test decontamination of soil and cement manufacture recycled fine aggregate, found the water to solid ratio 0.35, with the partial substitution of slag powder increased the degree of viscosity and slurry more obvious way to add strong plasticizer may be improved.
Keywords: soil decontamination, recycled fine aggregate, cement mortar, slag powder |
參考文獻 |
參考文獻
1.經濟部礦物局,99-100年,砂石進出口量,台北,http://www.mine.gov.tw/statistics/ListStats.asp。
2.政府資料開放平台,99-100年,國內外砂石進出量,台北,http://data.gov.tw/。
3.內政部,2009年,非都市土地使用管制規則。
4.經濟部水利署,2011年,經濟部水利署多數平均價決標標售土石處理原則。
5.經濟部礦務局,2002年,91-100年臺灣地區年度砂土石產銷調查報告。
6.經濟部礦務局,2010年,非都市土地申請變更編定為礦業用地興辦事業計畫審查作業要點。
7.經濟部礦務局,2012年,第一類及第二類砂石碎解洗選場現地認定基準。
8.財團法人台灣營建研究院,2008年11月,營建物價( Construction Cost Data ),第六十八期。
9.經濟部工業局,2011年,http://www.moeaidb.gov.tw/portal.html。
10.陳碩彥,工業廢棄物再利用於營建工程粒料策略之研究,碩士論文,國立中央大學土木工程研究所,2005。
11.資源回收再利用法 - 行政院環境保護署。(98.01.21.修正)
12.台灣法學會,2006年,配合廢棄物零廢棄政策檢討研修合併廢棄物清理法及資源回收再利用法計畫期末報告。
13.財團法人台灣綠色生產力基金會,2008年,工業廢棄物資源化發展現況與展望。
14.經濟部工業局,2005年,經濟部工業局資源化工業輔導計畫。
15.經濟部工業局,2008年,經濟部工業局工業廢棄物清除處理與資源化輔導計畫。
16.經濟部工業局,2010年,資源再生產業競爭力提升計畫。
17.Tay, J. H., and Show, K. Y., “Reuse of wasterwater Sludge in Manufacturing Non-conventional Construction Material-an Innovative Approach to Ultimate Sludge Disposal,” Water Science and Technology,vol. 26, No. 5-6, pp. 1165-1174 (1992).
18.Monzo, J., Paya, J., Borrachero, M. V. and Corcoles, A., “Use of Sewage Ash (SSA)-Cement Admixtures in Mortars,” Cement and Concrete Research, Vol. 26, No. 9, pp. 1389-1398 (1996).
19.Yague, A., Valls, S., Va´zquez, E., and Albareda, F., “Durability of concrete with addition of dry sludge from waste water treatment plants,”Cement and concrete research, vol. 35, No. 13, pp. 1064-1073 (2005).
20.Valls, S., Yague, A., Va´zquez, E., and Mariscal, C., “Physical and mechanical properties of concrete with added dry sludge from a sewage treatment plants,” Cement and concrete research, vol. 34, No. 27, pp.2203-2208 (2004).
21.潘時正,下水污泥灰渣特性及應用於水泥砂漿之研究,國立中央大學環境工程研究所碩士論文,2002年。
22.陳志榮,改質水庫淤泥對水泥砂漿工程性質之影響,國立成功大學土木工程研究所碩士論文, 2005年。
23. Evagelista, L., and Brito, j., “Mechanical behaviour of concrete made with fine recycled concrete aggregates,” Cement and Concrete Composites, vol. 29, No. 14, pp. 397-401 (2007).
24. Debieb, F., and Kenai, S., “The use of coarse and fine crushed bricks as aggregate in concrete,” Construction and Building Materials, vol. 34,No. 23, pp. 2203-2208 (2007).
25. Poon, C. S., and Chan, D., “The use of recycled aggregate in concrete in Hong Kong,” Resources, Conservation and Recycling, vol. 43, No. 11, pp.346-353(2006).
26. Binici, H., “Effect of crushed ceramic and basaltic pumice as fine sludge aggregates on concrete mortars properties,” Construction and Building Materials, vol. 21, No. 15, pp. 1191-1197 (2007).
27.紀宗男,淨水污泥餅資源化應用於管溝回填材料之研究,淡江大學土木工程學系碩士論文,2003年。
28.翁頤慶,造粒-乾燥技術,醫藥工程設計,第二期 ,1998年。
29.黃華照,偏高嶺土輕質粒料混凝土應用於海洋工程,國立中山大學海洋環境及工程學系碩士論文,2006年。
30.余岳峰,下水污泥焚化灰渣燒成輕質粒料特性之研究,國立中央大學環境工程研究所碩士論文,2000年。
31.許桂銘,飛灰輕質粒料製程及性質之研究,國立臺灣工業技術學院工程技術研究所營建工程技術學程碩士論文,1991年。
32.廉慧珍,童良,陳恩義,建築材料物相研究基礎,清華大學出版社,1996年。
33. S. Moll, S. Bringezu and H. Schütz, “ Resource Use in European Countries Material Flows and Resource Management ”, Wuppertal Institute for Climate, Environment and Energy, Wuppertal (DE), 2005.
34. J. Fiksel, “ Creating Eco-efficient Products and Processes ”, Design for Environment, McGraw-Hill, 1996.
35. J.A. Moya, N. Pardo and A. Mercier, “Energy Efficiency and CO2 Emissions: Prospective Scenarios for the Cement Industry ”, JRC Scientific and Technical Report, EUR 24592 EN, 2010.
36. BRE, “ Developing a Strategic Approach to Construction Waste—20 year strategy ”, Proceedings of the CIB Task Group 39—Deconstruction Meeting, Garston, Watford WD25 9XX (UK), 2006. (available online at:
http://www.bre.co.uk/filelibrary/pdf/rpts/waste/ConstructionWasteReport240906.pdf; accessed on 20 February 2013).
37. P. Crowther, “ Design for Buildability and The Deconstruction
Consequences ”, Proceedings of the CIB Task Group 39 -Deconstruction
Meeting, Karlsruhe, Germany, 2002.
38. R.J. Collins, “ Recycled Aggregates in Ready-mixed Concrete, in: J.W.Llewellyn, H. Davis (Eds.) ”, Proceedings of Sustainable Use of Materials, Building Research Establishment, UK, Papers 1 –2, 1996.
39. M. Tavakoli and P. Soroushian, “ Strengths of Recycled Aggregate Concrete Made Using Field-demolished Concrete As Aggregate ”, ACI Mater. J. 93 (2) 182–190,1996.
40. I.B. Topcu, N.F. Guncan, “ Using Waste Concrete As Aggregate ”, Cement and Concrete Research, 25 (7) 1385– 1390, 1995.
41. RILEM 121-DRG, “ Specification for Concrete with Recycled Aggregates ”, Materials and Structures 27 (173) 557–559, 1994.
42. K.J. Schenk, Patent No. WO 2011/142663, The Netherlands, 2011.
43. Amnon Katz,“ Properties of Concrete Made with Recycled Aggregate from Partially Hydrated Old Concrete”, Cement and Concrete Research 33 703–711, 2003.
44.公共工程高爐石混凝土使用手冊,7~14頁,2012年。
45.ACI Committee 233, “Ground granulated blast-furnace slag as a cementitious constituent in concrete”, American Concrete Institute, Detroit, 1996.
46.吳宗翰,改質人工粒料的應用策略基礎研究,國立中央大學土木工程學系,碩士論文,2012年。
47.朱涵,石灰石粉對水泥-粉煤灰膠凝體系與減水劑相容性的影響,2012年,混凝土,271(5):94-99。
48.林郭港,CMP污泥調製環保水泥之工程性質研究,國立聯合大學土木與防災工程學系,碩士論文,2011年。 |