博碩士論文 102331005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:18.191.189.124
姓名 林庭瑜(Ting-Yu Lin)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 運用石墨烯射頻線圈增進7T磁振造影訊雜比之研究
(Investigation of Signal-to-Noise Ratio Enhancement using Graphene-based Coil at 7T MRI)
相關論文
★ 應用希爾伯特黃轉換於功能性磁振造影之非穩態信號分析★ 評估生理雜訊對於靜息態功能性磁振造影之影響
★ 瀕死狀態下大腦功能性聯結之動態變化:觀察氯化鉀注射後大鼠之生理反應★ 探討同步功能性磁振造影與腦電圖於夜間睡眠研究
★ 利用同步腦電圖與功能性磁振造影探討睡眠階段之大腦活動★ 以腦電圖觀察大腦恢復清醒的動態歷程
★ 探討區域性大腦網路恢復於睡眠遲惰研究★ 中風復健與大腦的神經可塑性變化: 縱貫性功能性磁振造影研究
★ 以功能性磁振造影初探分心於創意醞釀之影響★ 以靜息態功能性磁振造影探討頸動脈支架手術對於頸動脈狹窄病患大腦功能之影響
★ 睡眠遲惰期間警覺網路於執行警覺任務下的動態恢復歷程
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在臨床的診斷上,磁振造影是非常重要的診斷工具,其具備著非侵入性及非輻射性的特性,並且可量測體內組織的解剖影像及功能性影像,藉由影像的對比度可以清楚知道不同組織的位置及病灶區,為了提高診斷的精確性及影像品質,訊雜比(Signal-to-noise ratio, SNR)是磁振造影硬體設備改進的關鍵因素;然而,磁振造影容易受到外在環境影響,主要來源是射頻線圈(Radiofrequency (RF) coil)本身所產生的熱雜訊。因此,在本研究中,我們採用具有低阻抗性質的石墨烯來設計射頻表面線圈,以達提昇影像訊雜比之目的。在本研究中,設計兩種不同材料的電感式耦合線圈,銅箔材料的表面線圈及銅箔上鍍石墨烯的表面線圈,表面線圈內徑分別設計2、3、4公分,線圈寬度則設計4毫米,將此自製線圈在兩種不同影像序列(FLASH及TurboRARE-T2)下進行假體及大鼠影像的掃描。本研究結果顯示,銅線圈比石墨烯線圈有稍高的Q值,並且在影像訊雜比的部分,所有石墨烯線圈比銅線圈皆有些微高的影像訊雜比,除了使用2公分的石墨烯線圈掃描大鼠影像時訊雜比相對比較差;而影像深度的部分,除了2公分的石墨烯線圈以外,所有的銅線圈比石墨烯線圈皆有些較深的影像。在本研究中,所有石墨烯線圈的影像訊雜比只有些微的提升,主要可能的原因是,石墨烯線圈表面存在著電容的焊點及黏貼材料時產生的皺摺,造成表面線圈上的石墨烯材料脫落,甚至有可能已經破壞掉原有石墨烯的結構,導致影響後續掃描實驗的影像品質,因此本實驗證實,是有需要設計如何讓焊點遠離石墨烯材料,必且還能保有原本石墨烯的低電阻狀態。
摘要(英) Magnetic resonance imaging (MRI) is an important biomedical imaging technology in clinical diagnosis due to its non-invasiveness and non-radioactivity. To provide high image quality for better precision in diagnosis, the signal-to-noise ratio (SNR) is the key factor in the investigations of MRI hardware improvement. However, the MR images are easily affected by environment noise, majorly originating from the quality of radio-frequency (RF) coil. In this study, our aim is to enhance the imaging sensitivity by designing low-impedance graphene-based RF coils. We designed two types of inductive-coupling coils: (A) surface coils with copper foil and (B) surface coils with copper foil coating the graphene. The inner diameter and wire width of coil were 2, 3, and 4 cm and 4 mm, respectively. We then used the homemade surface coil to map the phantom and SD rats based on the FLASH and TurboRARE-T2 sequence. All Q values of the graphene-based (GB) coil were higher than the copper (Cu) coils. All images of GB coil were with higher SNR than those of the Cu coils, except for the rat images of the 2-cm GB coil. Nevertheless, the observable image depths were slightly longer using Cu coils than using the 2-cm GB coil. In summary, the SNR enhancement using the GB coils was implicit, compared with using Cu coils in our design. The possible reason was that the low-impedance feature of graphene was jeopardized by the solder point and surface wrinkling on the surface coils. Thus, our work confirmed the necessary to design the solder point away from the graphene area in guarantee of the low impedance in the GB coil.
關鍵字(中) ★ 磁振造影
★ 射頻線圈
★ 石墨烯
★ 訊雜比
關鍵字(英) ★ magnetic resonance imaging
★ radio-frequency coil
★ graphene
★ signal-to-noise ratio
論文目次 中文摘要 v
Abstract vi
致謝 vii
Contents viii
List of Tables x
List of Figures xi
Chapter 1 Introduction 1
1.1 Importance of radio frequency (RF) coil in MRI 1
1.2 RF coil development 2
1.2.1 High temperature superconducting RF coils 3
1.2.2 Cryogenic RF coils 4
1.2.3 Carbon nanotube receiver coils 5
1.3 Fundamental problem 7
1.4 Objective of thesis 7
Chapter 2 Materials and methods 8
2.1 Novel material – Graphene 8
2.1.1 Manufacturing graphene 8
2.1.2 Size of RF coils 10
2.1.3 Materials of RF coils 12
2.2 Property measurements 13
2.2.1 Resonance frequency measurement 13
2.2.2 Q-factor measurement 14
2.3 Image acquisition 16
2.3.1 Sample 16
2.3.2 MRI parameters 16
Chapter 3 Result 18
3.1 Coil performances 18
3.1.1 Coils frequency responses 18
3.1.2 Coils Q-factors 21
3.1.3 Prediction SNR gain 22
3.2 SNR of images 23
3.2.1 Phantom experiments 23
3.2.2 Animals experiments 28
3.3 Profile of images 33
3.3.1 Profile of phantom image 33
3.3.2 Profile of animals image 40
3.4 DTI Results 45
Chapter 4 Discussion 46
4.1 Predication and practical SNR gain 46
4.2 Process of manufacturing the surface coils 47
4.3 Measurement 49
4.4 Size of RF coils 52
4.5 Type of graphene-based surface coils 54
4.6 Limitations 55
Chapter 5 Conclusion 56
Reference 57
Appendixes 59
A-1. Graphene property 59
A-2. RF coil design 61
A-2-1 RF coil type 61
A-2-2 Impedance matching circuit 62
A-2-3 Prediction SNR gain 63
參考文獻 [1] J. R. G. J. Thomas Vaughan, RF Coils for MRI, 2012.
[2] T. A. E. R.D.Black, P.B.Roemer,0. M.Mueller, A. Mogro-Campero, L. G. Turner, G. A. Johnson, "A High-Temperature Superconducting Receiver for NuclearMagneticResonance Microscopy," 1993.
[3] T. H. HIDEHIKO OKADA, JOHN G. VAN HETEREN, AND LEON KAUFMAN, "RF coil for Low-field MRI Coated with High-Temperature Superconductor," Journal of magnetic resonance. Series B 107, pp. 158-164, 1995.
[4] I.-T. L. Hsu-Lei Lee, Jyh-Horng Chen, Herng-Er Horng, and Hong-Chang Yang, "High-Tc Superconducting Receiving Coils for Nuclear Magnetic Resonance Imaging," IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, pp. 1326-1329, 2005.
[5] K.-L. T. Hong-Chang Yang, Ji-Cheng Chen, Chiu-Hsien Wu, Herng-Er Horng, Jyh-Horng Chen and Li-Wei Kuo, "High-Tc superconducting surface coils for improving the image quality on a 3 T imager," SUPERCONDUCTOR SCIENCE AND TECHNOLOGY, pp. 777-780, 2007.
[6] H.-C. Y. In-Tsang Lin, Chang-Wei Hsieh, Tun Jao, and Jyh-Horng Chen, "Human hand imaging using a 20 cm high-temperature superconducting coil in a 3T magnetic resonance imaging system," JOURNAL OF APPLIED PHYSICS, 2010.
[7] H. K. S. Alexander C. Wright, and Felix W. Wehrli, "In Vivo MR Micro Imaging With Conventional Radiofrequency Coils Cooled to 77°K," 2000.
[8] D. Ratering, C. Baltes, J. Nordmeyer-Massner, D. Marek, and M. Rudin, "Performance of a 200-MHz cryogenic RF probe designed for MRI and MRS of the murine brain," Magnetic Resonance in Medicine, vol. 59, pp. 1440-1447, Jun 2008.
[9] B. G. R. Viswanathan, K. Anderson, M. Bronskill, R. Baughman, M. Zhang, S. Fang, A. Zakhidov, and A. Aliev, "Beyond Copper: MR Imaging with Carbon Nanotube Receiver Coils," presented at the ISMRM, 2009.
[10] B. G. R. Viswanathan, K. Anderson, and A. Krieger, "A Novel Nanomaterial Coil for High Resolution Prostate Imaging," presented at the ISMRM, 2010.
[11] B. G. R. Viswanathan, G. Mizsei, and S. Rajakutty, "High Performance Nanomaterial Coil for Carotid Imaging," presented at the ISMRM, 2011.
[12] N. L. M. Aly Saad Aly, D. Weyers, S. Rasheed, E. M. Abdel-Rahman, and A. Hajian, "Investigating the Use of Carbon Nanotubes in MRI Receiver Coils," presented at the ISMRM, 2011.
[13] T. J. S. K.M. GILBERT, B.A. CHRONIK, "RF Coil Loading Measurements Between 1 and 50 MHz to Guide Field-Cycled MRI System Design," Concepts in Magnetic Resonance Part B, pp. 177-191, 2008.
[14] 洪偉修教授, "世界上最薄的材料-石墨烯," 98康熹化學報報, 11月號, pp. 1-4, 2009.
[15] S.-H. C. Shih-Hao Chan, Wei-Ting Lin, Meng-Chi Li, Yung-Chang Lin and Chien-Cheng Kuo, "Low-temperature synthesis of graphene on Cu using plasma-assisted thermal chemical vapor deposition," Nanoscale Research Letters, 2013.
[16] A. C. Ferrari, "Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects," Solid State Communications, vol. 143, pp. 47-57, Jul 2007.
[17] D. D. Wheeler and M. S. Conradi, "Practical exercises for learning to construct NMR/MRI probe circuits," Concepts in Magnetic Resonance Part A, vol. 40a, pp. 1-13, Jan 2012.
[18] A. K. G. A. K. S. NOVOSELOV, "The rise of graphene," Nature Materials 2007.
[19] F. G. A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov and A. K. Geim, "The electronic properties of graphene," REVIEWS OF MODERN PHYSICS, 2009.
指導教授 吳昌衛(Changwei W Wu) 審核日期 2015-10-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明