姓名 |
林孟瑋(Meng-wei Lin)
查詢紙本館藏 |
畢業系所 |
機械工程學系 |
論文名稱 |
MOCVD旋轉主軸設計分析與驗證 (Design, Analysis and Validation of a Spindle for MOCVD Process)
|
相關論文 | |
檔案 |
[Endnote RIS 格式]
[Bibtex 格式]
[相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放)
|
摘要(中) |
本論文主旨為設計並製造出能用於MOCVD腔體的旋轉主軸,並透過實驗驗證其相關之設計性能。在MOCVD的製程環境中,高速、高溫與真空環境在設計上是主要的難關,且在此種嚴苛環境下還須確保主軸的運轉穩定度。因此在設計方向上分為支撐軸承設計、密封設計與冷卻系統設計三大部分。
在支撐軸承設計採用固定-浮動配置。其中固定端為背對背配置的角接觸滾珠軸承,目的為增長跨距,使旋轉軸的剛性增加,而浮動端則是深溝滾珠軸承,用來支撐旋轉軸下端的徑向負載。此外為提高主軸穩定度,降低其在轉動時的偏擺量與振動,會在軸承上施加預壓。
在密封設計方面,運動用真空密封元件採用磁流體軸封,固定件之間則使用O-ring來確保其真空度。為求旋轉軸的穩定,磁流體軸封配置於軸承的固定端與浮動端之間。
冷卻系統則分有兩個系統,分別為主軸外部冷卻流道與主軸中心冷卻流道。其中主軸外部冷卻流道是用於冷卻軸承與磁流體軸封。考慮其冷卻效果有限,因此搭配主軸中心冷卻流道直接冷卻旋轉軸,以確保主軸內的零件不會直接承受高溫而失效。冷卻系統設計完成後會先利用有限元素分析軟體確認其冷卻效能。
為確保設計之主軸能滿足MOCVD腔體的要求,本論文設計了性能驗證測試,包括主軸溫度、載盤偏擺與主軸振動等量測實驗。在主軸溫度量測實驗中,分別量測磁流體軸封外部冷卻、主軸外部冷卻與主軸中心冷卻三種冷卻條件下主軸各部位的溫度,以確認三種流道的冷卻效果。載盤偏擺量測則是量取載盤的軸向偏擺,以確認其偏擺不會影響製程結果。主軸振動量測則是為了確認主軸運轉時不會產生的過大的振動。
主軸溫度量測結果顯示主軸中心冷卻效果優於主軸外部冷卻。比較溫度量測實驗與有限元素分析之結果,兩者接近,可驗證本研究所建立之熱傳模型之可信度。另一方面,載盤軸向偏擺最大值為0.113 mm,小於設計目標0.15 mm。主軸振動量測到最大加速度為0.136g,確認此數值不會對機台造成明顯的影響。
綜合上述實驗結果,確認本論文所設計製作之主軸能用於MOCVD腔體中。 |
摘要(英) |
The aim of the paper is to design and manufacture a spindle to apply in a chamber for MOCVD process and validate its performances experimentally. The spindle must be designed as stable and robust to fulfill the extreme requirements, such as high speed, high temperature and vacuum. The main topics of design include therefore the bearing supporting, the sealing and the cooling system.
The bearing supporting in the study is selected as locating-floating arrangement. The located bearing is a set of angular contact ball bearings in back-to-back arrangement to increase the supporting span for enhancement of the shaft stiffness. A deep groove ball bearing is used for the floating bearing in order to share the radial load. In addition, a preload is applied to the bearings in order to increase the stability and the stiffness of the spindle and to reduce the run-out and vibration of the susceptor.
A magnetic rotary feedthrough is used for vacuum sealing, which is located between the located bearings and the floating bear considering the stability of the spindle.
Two kinds of cooling systems are applied in the spindle: housing cooling system and shaft cooling system. The housing cooling system is used to cool down the located bearings and the feedthrough. With consideration that the cooling efficiency of housing cooling is not enough, the shaft cooling system is added.
In order to validate the design, a FEM analysis is conducted for both cooling system. The analysis results are also compared with the results from an experiment.
In order to ensure the spindle applicable for MOCVD chamber, three function validation tests are initiated: temperature measurement of the spindle, run-out measurement of the susceptor and vibration measurement of the spindle. Three cooling conditions are considered in the temperature measurement: magnetic rotary feedthrough cooling, housing cooling and shaft cooling. The axial run-out of susceptor is measured to confirm this error will not affect MOCVD process. The vibration condition of the spindle is also measured by using pose of accelerometers to confirming the stability during operation.
From the results of measured temperature, the cooling efficiency of shaft cooling is better than that of housing cooling. Comparing with the results from the experimental measurement, the results from the heat transfer FEA are in good agreement with the measured results. The max value of axial run-out is 0.113 mm and less than the required value of 0.15 mm. The max. measured acceleration of vibration is 0.136 g. And no significant impact on the spindle is expected. Based on the results, the spindle developed in this paper is applicable for MOCVD chamber. |
關鍵字(中) |
★ 有機金屬化學氣相沉積法 ★ 主軸 ★ 軸承預壓 ★ 磁流體軸封 ★ 冷卻系統 |
關鍵字(英) |
★ MOCVD ★ Spindle ★ Preload of bearings ★ Magnetic rotary feedthrough ★ Cooling system |
論文目次 |
摘要 i
Abstract iii
謝誌 v
目錄 vi
圖目錄 ix
表目錄 xviii
第1章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 5
1.3 研究目標 7
1.4 論文架構. 8
第2章 主軸概念設計 9
2.1 設計目標 9
2.2 設計架構 9
2.2.1 支撐軸承設計 10
2.2.2 密封設計 10
2.2.3 冷卻系統設計 12
第3章 軸承支撐與密封設計 17
3.1 設計概念 17
3.2 軸承支撐設計 19
3.2.1 負載狀況 19
3.2.2 預壓設計 20
3.2.3 軸承之配置與選用 23
3.3 主軸熱膨脹計算 25
3.3.1 軸向膨脹計算 26
3.3.2 徑向膨脹計算 27
3.4 公差設計 29
3.4.1 配合公差 29
3.4.2 動平衡等級 29
3.4.3 幾何公差與表面粗糙度 31
3.5 密封設計 32
3.5.1 磁流體軸封 32
3.5.2 流道密封設計 35
第4章 冷卻系統設計 37
4.1 冷卻系統架構 37
4.1.1 冷卻水泵 39
4.1.2 散熱器 40
4.2 主軸外部冷卻流道設計 42
4.2.1 軸承外部冷卻 42
4.2.2 磁流體軸封外部冷卻 43
4.3 主軸中心冷卻流道設計 43
4.3.1 軸端入水 44
4.3.2 側邊入水 51
第5章 冷卻熱傳有限元素分析 57
5.1 不鏽鋼測試主軸分析 57
5.1.1 分析模型 57
5.1.2 分析設定 61
5.1.3 分析結果 64
5.1.4 小結 69
5.2 軸心冷卻測試主軸分析 69
5.2.1 分析模型與分析設定 69
5.2.2 分析結果 73
5.2.3 結果比較 77
5.2.4 小結 79
第6章 主軸性能測試 80
6.1 實驗規劃 80
6.1.1 實驗項目 80
6.1.2 主軸測試實驗組合 80
6.1.3 加熱裝置 83
6.1.4 感測裝置 85
6.1.5 數據擷取 86
6.2 主軸溫度量測 87
6.2.1 磁流體軸封簡易主軸 88
6.2.2 不鏽鋼測試主軸 97
6.2.3 軸心冷卻測試主軸 109
6.2.4 溫度分析與實驗結果比較 132
6.3 載盤偏擺量測 134
6.4 主軸振動量測 142
第7章 結論與未來展望 150
7.1 結論 150
7.2 未來展望 151
參考文獻 152
附錄 一 磁流體軸封簡易主軸實驗結果 154
附錄 二 不鏽鋼測試主軸實驗結果 157
附錄 三 軸心冷卻測試主軸實驗結果 160
軸心通水外側入水 160
軸心通水內側入水 163 |
參考文獻 |
1 Dimitrios I. Fotiadis, Anthony M. Kremer, Donald R. Mckenna and Klavs F. Jensen “Complex flow phenomena in vertical mocvd reactors: effects on deposition uniformity and interface abruptness” Journal of crystal growth 85 , 1987, 154-164.
2 Takashi Kobayashi, Minoru Ida, Kenji Kurishima “Effects of susceptor rotation speed and total flow rate on selectivity in metalorganic chemical vapor deposition growth techniques” Journal of crystal growth 140 , 1994, 432-434.
3 Ziba Nami, Ahmet Erbil, and Gary S. May. “Reactor design considerations for mocvd growth of thin films” IEEE Transactions on semiconductor manufacturing, vol. 10, NO. 2,1997.5.
4 US 2004/0231599 A1 , Markus Schwambera ,Walter Franken, Gerhard Karl Strauch, “process chamber with a base with sectionally different rotational drive and layer deposition method in such a process chamber” Nov.25.2004
5 US 2011/0300297A1 , Adrian Celaru,Todd A. Luse, Ajit P. Paranjpe, Joseph Scandariato, Quinfu Tang, “Multi-wafer rotating disc reactor with inertial planetary drive”, Dec.8.2011.
6 US 6,592,675 B2 , Katsuhito Nishikawa,”Rotating susceptor”, Jul.15.2003.
7 許景逵.“滾動軸承操作間隙對軸承使用性能的影響”機械月刊390期,2008.1,56-63。
8 陳威廉. “工具機主軸的軸承預壓” 機械月刊306期,2001.1,234-241。
9 紀華偉、趙金生.“主軸軸承預壓探討” 機械月刊332期,2003.3,495-451。
10 Changqing Bai,Hongyan Zhang,Qingyu Xu “Effects of axial preload of ball bearing on the nonlinear dynamic characteristics of a rotor-bearing system” Nonlinear Dynamics (2008) 53: 173–190.
11 Tao Xu,Guanghua Xu,Qin Zhang,Cheng Hua,Hu Zhang1and Kuosheng Jiang“Experimental study on bearing preload optimum of machine tool spindle” Journal of physics:Conference series ,VOL. 364,iss 1,2012
12 許景逵.“單列角接觸滾珠軸承的選用”機械月刊407期,2009.6,60-71。 |
指導教授 |
蔡錫錚(Shyi-jeng Tsai)
|
審核日期 |
2015-10-12 |
推文 |
facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu
|
網路書籤 |
Google bookmarks del.icio.us hemidemi myshare
|