論文目次 |
摘要…………………………………………………………………………………………………………………………..i
Abstract…………………………………………………………………………………………………………………….ii
Contents…………………………………………………………………………………………………………………..iii
List of figures…………………………………………………………………………………………………………....v
Chapter 1. Introduction……………………………………………………………1
1.1 motivation………………………………………………………………………..1
1.2 literature review…………………………………………………………………2
1.2.1 elastic and viscoelastic measurement with AFM………………………….2
1.2.2 mechanical vibration of yeast’s cell wall……………………………………3
1.3 background………………………………………………………………………4
1.2.1 AFM principles………………………………………………………………...4
1.2.2 AFM operation modes………………………………………………………..5
1.2.3 Hertz model……………………………………………………………………7
1.2.4 complex shear modulus……………………………………………………...8
Chapter 2. Materials and methods…………………………………………….10
2.1 agar preparation……………………………………………………………….10
2.2 cell culture condition…………………………………………………………..10
2.2.1 3T3 fibroblasts…………………………………………………………….....10
2.2.2 LoVo cells…………………………………………………………………….10
2.2.3 SW620 cells………………………………………………………………….10
2.2.4 HCT116 cells………………………………………………………………...11
2.3 force measurement……………………………………………………………11
2.3.1 sensitivity calibration………………………………………………………..11
2.3.2 spring constant calibration………………………………………………....11
2.4 image scanning………………………………………………………………..12
2.5 Young′s modulus measurement……………………………………………..13
2.6 complex shear modulus measurement……………………………………...14
2.7 cantilever perturbation………………………………………………………...14
2.7.1 constant height mode……………………………………………………….14
2.7.2 signal processing…………………………………………………………....14
2.7.3 power spectrum density…………………………………………………….15
2.7.4 total power, average power, and spectral entropy……………………….15
Chapter 3. Results and discussions…………………………………………..16
3.1 elastic property of glass, Petri dish, and agar……………………………….16
3.2 viscoelastic property of 5% agar……………………………………………..19
3.3 elastic property of 3T3 fibroblast, LoVo, SW620, and HCT116…………..21
3.4 viscoelastic property of 3T3 fibroblast, LoVo, SW620, and HCT116…….25
3.5 mechanical perturbation of cytoplasm to the AFM tip……………………..27
3.5.1 force power spectrum of 1% agar, SW620, and HCT116……………….27
3.5.2 active particles activity………………………………………………………30
3.5.3 autocorrelation function fitting……………………………………………...38
Chapter 4. Conclusions and prospects………………………………………41
References………………………………………………………….....................42 |
參考文獻 |
1. Marusyk, A. and K. Polyak, Tumor heterogeneity: causes and consequences. Biochim Biophys Acta, 2010. 1805(1): p. 105-17.
2. Medema, J.P., Cancer stem cells: the challenges ahead. Nat Cell Biol, 2013. 15(4): p. 338-44.
3. Visvader, J.E. and G.J. Lindeman, Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer, 2008. 8(10): p. 755-68.
4. Pullarkat, P., P. Fernandez, and A. Ott, Rheological properties of the Eukaryotic cell cytoskeleton. Physics Reports, 2007. 449(1-3): p. 29-53.
5. de Toledo, M., et al., Cooperative anti-invasive effect of Cdc42/Rac1 activation and ROCK inhibition in SW620 colorectal cancer cells with elevated blebbing activity. PLoS One, 2012. 7(11): p. e48344.
6. Physical Sciences - Oncology Centers, N., et al., A physical sciences network characterization of non-tumorigenic and metastatic cells. Sci Rep, 2013. 3: p. 1449.
7. Rathje, L.S., et al., Oncogenes induce a vimentin filament collapse mediated by HDAC6 that is linked to cell stiffness. Proc Natl Acad Sci U S A, 2014. 111(4): p. 1515-20.
8. Microrheology of Human Lung Epithelial Cells Measured by Atomic Force Microscopy.
9. Smith, B.A., et al., Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist. Biophys J, 2005. 88(4): p. 2994-3007.
10. Andrew E. Pelling, S.S., Edith B. Gralla, Joan S. Valentine, James K. Gimzewski, Local Nanomechanical Motion of the Cell Wall of Saccharomyces cerevisiae. Science, 2004. 305.
11. Pelling, A.E., et al., Time dependence of the frequency and amplitude of the local nanomechanical motion of yeast. Nanomedicine, 2005. 1(2): p. 178-83.
12. Nanowizard AFM Handbook.4.3a. 2015.
13. Hutter, J.L. and J. Bechhoefer, Calibration of atomic-force microscope tips. Review of Scientific Instruments, 1993. 64(7): p. 1868.
14. JPK SPM Software 3.3a. 2009.
15. Quantitative Analysis of the Viscoelastic Properties of Thin Regions of Fibroblasts Using Atomic Force Microscopy. Biophysical Journal, 2004.
16. Data Processing Software Manual 4.3. 2014.
17. Sunyer, R., et al., The temperature dependence of cell mechanics measured by atomic force microscopy. Phys Biol, 2009. 6(2): p. 025009.
18. Correction of microrheological measurements of soft samples with atomic force microscopy for the hydrodynamic drag on the cantilever. Langmuir, 2002.
19. Nayar, V.T., et al., Elastic and viscoelastic characterization of agar. J Mech Behav Biomed Mater, 2012. 7: p. 60-8.
20. Kuznetsova, T.G., et al., Atomic force microscopy probing of cell elasticity. Micron, 2007. 38(8): p. 824-33.
21. Jian-Qiu Wu, T.P., Counting Cytokinesis Proteins Globally and Locally in Fission Yeast. Science, 2005. 310: p. 310-314.
22. Glasgow, L.A., Transport Phenomena: An Introduction to Advanced Topics. 2010: p. 183.
23. Rother, J., et al., Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines. Open Biol, 2014. 4(5): p. 140046. |