博碩士論文 102323049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:159 、訪客IP:3.142.200.226
姓名 陳聰予(Tsung-yu Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電化學噴流摻雜磨料後對高碳鋼SKD11加工之差別探討
(The Investigation of Electrochemical Jet Machining on High Carbon Steel SKD11 with Abrasive)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) ECJM電化學精微噴流加工(ECJM, Electrochemical jet machining)是一種非傳統的加工技術,其技術是利用電化學反應所發生的金屬移除效應去加工,金屬解離後由電解液的噴射流動帶離加工區,而磨料混漿噴射加工(ASJM, Abrasive jet machining)過程則是由水柱夾帶著磨料粒子衝擊目標工件,進而沖蝕工件材料。電化學精微噴射加工具有電極不易耗損,以電解方式噴射去除被加工物、無加工應力及變質層、加工速度快及加工表面平滑度佳的優勢,
  本文研究目標為結合ECJM電化學精微噴射加工與ASJM磨料混漿噴射加工。由於電化學加工技術具有獨特的加工特色,常被應用於他種機械難以加工之場合。但當電化學技術應用於碳鋼或熱處理過後材料加工時,其加工後表面會生成黑層(Black layer)即富碳層。此層非電化學反應析出之產物,而是靠周圍鐵以離子方式離開工件表面後脫落,但因碳活性大故容易積附在工件表面,且不易藉由一般電化學加工之電解液流動方式帶離工件表面,進而阻礙電化學加工導致加工速率降低以及加工後工件表面粗糙度增加。
  有鑒於此,本文提出利用磨料漿體輔助電化學噴流加工對SKD11模具鋼進行微孔加工,利用物理性沖蝕和電化學腐蝕作用,來克服黑層阻礙加工之困難點,進而提升加工效率和降低表面粗糙度。
  本文研究中使用500與700μm的中空管,電解液使用NaCl,探討不同電壓、電解液濃度、磨料濃度、加工間隙與流量對加工的影響性,並比較有效深度與深寬比,最後由有效深度與深寬比來選取最佳之加工參數。最後以最佳參數加工出一1000μm的孔徑,比對有無磨料輔助之電化學噴流加工之差異。
  實驗結果顯示,電壓在70V,NaCl濃度在20%,磨料濃度在1%,加工間隙在1000μm,流量在340ml/min時有最佳的有效高度。而有磨料輔助之電化學噴流加工較無磨料輔助之電化學噴流加工在粗糙度與移除量上,效果都來得好。
摘要(英) Electrochemical jet machining (ECJM) is one of the non-traditional machining technologies, the technology is by metal material removing through electrochemical reaction, the dissolved metal were carried away via jet flow from machining region. However, The process of abrasive slurry-jet machining (ASJM) is that erodes material using abrasive particles by a steam of fluid impinging on a target. ECJM has several advantages, such as difficult to wear electrode, removing part of workpiece by dissolved via jet, no residual stress and Metamorphic layer, high machining rate and good smoothness on machining surface.
In this thesis, the object of research is to combine ECJM and ASJM. Due to the unique technology of electrochemical machining, it is usually applied to other conditions which mechanics is hard to machine. However, when the electrochemical technology applies to machine carbon steel or the material which have been heat treatment, the black layer will be generated on the surface, that is Carbon-rich layer. This layer is not the products of the electrochemical reaction, but the iron in ions fall after leaves from the surface of workpiece. Because the carbon is active, it is easy to deposit to the surface of workpiece, and it is not easy to depart by electrolyte flow in general electrochemical machining method. Moreover, this layer will obstruct electrochemical machining, so it causes the lower rate of machining and more roughness on the surface after machining.
In view of these, we proposed a project that is to machine and clear burr on SKD11 by ASJM. We can overcome the obstruction of blacklayer in the physical erosion and electrochemical corrosion, so as to increase the efficiency of machining and decrease the roughness of the surface.
In this thesis, the hollow tube is used in 500 and 700μm, and the NaCl is chosen as the electrolyte to drill SKD11, and investigate the influence of different voltage, concentration, abrasive concentration, gap and flow. Moreover, we compare the effective height and aspect ratio to choose the best parameters, and make an object to machine a hole of 1000μm, and compare the difference if ECJM with abrasive or not.
The results show that the best effective occurs when voltage in 70V and NaCl concentration in 20%, gap in 1mm and the flow in 340ml/min. And no matter roughness or material removal, ECJM assisted with abrasive is better than ECJM only.
關鍵字(中) ★ 電化學噴流加工
★ 噴流
★ 磨料
★ 黑層
關鍵字(英) ★ ECJM
★ jet
★ abrasive
★ black layer
論文目次 目錄
摘要 I
Abstract III
目錄 V
表目錄 VIII
圖目錄 IX
符號說明 XII
第一章 緒論 1
1-1 前言 1
1-2 微電化學鑽孔加工 2
1-3 電化學噴流加工與磨料混漿噴流加工 3
1-4文獻回顧 4
1-4-1 電化學加工 4
1-4-2 電化學噴流加工與磨料混漿噴流加工 16
1-5 研究目的與動機 19
第二章 基本原理 20
2-1 電化學加工之基本理論 20
2-1-1 電流效率 21
2-1-2 極化與過電壓 21
2-1-3 歐姆定律 23
2-2 導電度、導電度與濃度之關係、電流密度 23
2-2-1 導電度 23
2-2-2 導電度與濃度之關係 24
2-2-3 電流密度 24
2-3 電化學反應式 24
2-4 水躍現象 25
第三章 實驗設備方法與步驟 26
3-1實驗設備 26
3-1-1 機台結構設計 26
3-1-2 刀具進給控制系統 26
3-1-3 直流電源供應器 27
3-1-4 噴流加工之噴嘴與電極 27
3-1-5 泵浦 27
3-1-6 磁石攪拌器 27
3-1-7 導電度量測儀 28
3-2 實驗材料 28
3-3實驗步驟及注意事項 29
3-3-1 實驗步驟 30
3-3-2 實驗量測及拍攝 31
3-3-3實驗注意事項 31
第四章 結果與討論 33
4-1電壓對移除量與孔徑的影響 34
4-2濃度對移除量與孔徑的影響 36
4-3磨料濃度及顆粒大小對移除量與孔徑的影響 37
4-4初始加工間隙對移除量與孔徑的影響 39
4-5流量對移除量與孔徑的影響 41
4-6各參數對有效深度與深寬比之影響 42
4-7最佳參數之目標孔徑比較 44
第五章 結論與未來展望 46
5-1 結論 46
5-2 未來展望 47
參考文獻 48
附表 59
附圖 61
參考文獻 參考文獻

[1] J.A. McGeough, Principles of electrochemical machining, ChapmanHall, London, pp. 9, (1974).
[2] D. Zhu and H. Y. Xu, Improvement of electrochemical machiningaccuracy by using dual pole tool, Journal of Materials Processing Technology, Vol. 129, pp. 15-18 (2002).
[3] H. Hocheng,Y. H. Sun, S. C. Lin and P.S. Kao, A material removal analysis of electrochemical machining using flat-end cathode, Journal of Material Processing Technology, Vol. 140, pp. 264-268 (2003).
[4] V.P. Zhitnikov, G.I. Fedorova, O.V. Zinatullina and A.V. Kamashev, Simulation of non-stationary processes of electrochemical machining, Journal of Materials Processing Technology, Vol. 149, pp. 398-403 (2004).
[5] A.N. Zaytsev, V.P. Zhitnikov and T.V. Kosarev, Formation mechanism and elimination of the workpiece surface macro-defects, aligned along the electrolyte stream at electrochemical machining, Journal of Materials Processing Technology, Vol. 149, pp. 439-444 (2004).
[6] J. Kozak, K. P. Rajurkar and Y. Makkar, Selected problems of micro-electrochemical machining, Journal of Materials Processing Technology, Vol. 149, pp. 426-431 (2004).
[7] S. K. Mukherjee, S. Kumar and P. K. Srivastava, Intervening variables in electrochemical machining, Tamkang Journal of Science and Engineering, Vol. 8, pp. 23-28 (2005).
[8] J. C. d. S. Neto, E. M. d. Silva and M. B. d. Silva, Intervening variables in electrochemical machining, Journal of Materials Processing Technology, Vol. 179, pp. 92-96 (2006).
[9] X. Jiawen, Y. Naizhang, T. Yangxin and K.P. Rajurkar, The modelling of NC-electrochemical contour evolution machining using a rotary tool-cathode, Journal of Materials Processing Technology, Vol. 159, pp. 272-277 (2005).
[10] T. Kurita and M. Hattori, A study of EDM and ECM/ECM-lapping complex machining technology, International Journal of Machine Tool and Manufacture, Vol. 46, pp. 1804-1810 (2006).
[11] T. Kurita, C. Endo, Y. Matsui, H. Masuda, K. Terasawa, F. Tanaka, H. Ikeda, K. Oguchi and K. Kobayashi, Mechanical/electrochemical complex machining method for efficient, accurate, and environmentally benign process, International Journal of Machine Tool and Manufacture, Vol. 48, pp. 1599-1604 (2008).
[12] J. C. Fang, Z. J. Jin, W. J. Xu and Y. Y. Shi, Magnetic electrochemical finishing machining, Journal of Materials Processing Technology, Vol. 129, pp. 283-287 (2002).
[13] Z. Fan, T. Wan and L. Zhong, The mechanism of improving machining accuracy of ECM by magnetic field, Journal of Materials Processing Technology, Vol. 149, pp. 409-413 (2004).
[14] B. Huaiqian, X. Jiawen and L. Ying, Aviation-oriented micromachining technology-micro-ECM in Pure Water, Chinese Journal of Aeronautics, Vol. 21, pp. 455-461 (2008).
[15] S. J. Lee, C. Y. Lee, K. T. Yang, F. H. Kuan and P. H. Lai, Simulation and fabrication of micro-scaled flow channels for metallic bipolar plates by the electrochemical micro-machining process, Journal of Power Source, Vol. 185, pp. 1115-1121 (2008).
[16] R. Maeda, K. Chikamori and H. Yamamoto, Feed rate of wire electrochemical machining using pulsed current, Precision Engineering, Vol. 31, pp. 193-199 (1984).
[17] E. S. Lee, J. W. Park, and Y. H. Moon, A study on electrochemical micromachining for fabrication of microgrooves in an air-lubricated hydrodynamic bearing, International Journal of Advanced Manufacture Technology, Vol. 20, pp. 720-726 (2002).
[18] B. Bhattacharyya and J. Munda, Experimental investigation on the influent of electrochemical machining parameters on machining rate and accuracy in micromachining domain, International Journal of Machine Tool and Manufacture, Vol. 43, pp. 1301-1310 (2003).
[19] B. Bhattacharyya and J. Munda, Experimental investigation into electrochemical micromachining (EMM) process, Journal of Materials Processing Technology, Vol. 140(1-3), pp. 287-291 (2003).
[20] B. Bhattacharyya , M. Malapati and J. Munda, Advancement in electrochemical micro-machining, Journal of Materials Processing Technology, Vol. 44, pp. 1577-1589 (2004).
[21] B. Bhattacharyya , M. Malapati and J. Munda, Experimental study on electrochemical micromachining, Journal of Materials Processing Technology, Vol. 169, pp. 485-492 (2005).
[22] S. J. Ebeid, M. S. Hewidy, T. A. Eltaweel and A. H. Youssef, Towards higher accuracy for ECM hybridized with low-frequency vibrations using the response surface methodology, Journal of Materials Processing Technology, Vol. 149, pp. 432-438 (2004).
[23] T. Kurita, K. Chikamori, S. Kubota and M. Hattori, A study of three-dimensional shape machining with an ECμM system, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 1311-1318 (2006).
[24] B. Bhattacharyya , M. Malapati , J. Munda and A. Sarkar, Influence of tool vibration on machining performance in electrochemical micro-machining of copper, Journal of Materials Processing Technology, Vol. 47, pp. 335-342 (2007).
[25] H. P. Tsui, J. C. Hung, J. C. You and B. H. Yan, Improvement of electrochemical microdrilling accuracy using helical tool. Material and Manufacturing Processes, Vol. 23, pp. 499-505 (2008).
[26] T. Haisch, E. Mittemeijer and J. W. Schultze, Electrochemical machining of the steel 100Cr6 in aqueous NaCl and NaNO3 solutions microstructure of surface films formed by carbides, Electrochimica Acta, Vol. 47, pp. 235-241 (2001).
[27] M. M. Lorengel, I. Kluppel, C. Rosenkranz, H. Bettermann and J. W. Schultze, The surface structure during pulsed ECM of iron in NaNO3, Electrochimica Acta, Vol. 48, pp. 3203-3211 (2003).
[28] M. M. Lorengel, I. Kluppel, C. Rosenkranz, H. Bettermann and J. W. Schultze, Pulsed electrochemical machining of iron in NaNO3 fundamentals and new aspects, material and manufacturing processes, Vol. 20, pp. 1-8 (2005).
[29] M. M. Lorengel and C. Rosenkranz, Micro-electrochemical surface and product investigations during electrochemical machining (ECM) in NaNO3, Electrochimica Acta, Vol. 47, pp. 785-794 (2005).
[30] C. Rosenkranz, M. M. Lorengel and J. W. Schultze, The surface structure during pulsed ECM of iron in NaNO3, Electrochimica Acta, Vol. 50, pp. 2009-2016 (2005).
[31] T. R. Idrisov, A. N. Zaitzev and V. P. Zhitnikov, Estimation of the process localization at the electrochemical machining by microsecond pulses of bipolar current, Journal of Materials Processing Technology, Vol. 149, pp. 479-485 (2004).
[32] J. Kozak, K. P. Rajurkar, and R. F. Ross, Computer simulation of pulse electrochemical machining (PECM), Journal of Materials Processing Technology, Vol. 28, pp. 149-157 (1991).
[33] J. Kozak, K. P. Rajurkar, and B. Wei, Modelling and analysis of pulse electro-chemical machining (PECM), Journal of Engineering for Industry, Vol. 116, pp. 316-323 (1994).
[34] J. Kozak, K. P. Rajurkar, and Y. Makkar, Study of pulse electrochemical micromachining, Journal of Manufacturing Processes, Vol. 6, pp. 7-14 (2004).
[35] S. V. Damme, G. Nelissen, B. V. D. Bossche and J. Deconinck, Numerical model for predicting the efficiency behavior during pulsed electrochemical machining of steel in NaNO3, Journal of Applied Electrochemistry, Vol. 36, pp. 1-10 (2006).
[36] R. Schuster, V. Kirchner and P. Allongue, Electrochemical micro machining, Science, Vol. 289, No. 5, pp. 98-101 (2000).
[37] V. Kirchner, L. Cagnon, R. Schuster, and Gerhard Ertl, Electrochemical machining of stainless steel microelements with ultrashort voltage pulses, Applied Physics Letters, Vol. 79(11), pp. 1721-1723 (2001).
[38] A. L. Trimmer, J. L. Hudson, M. Kock and R. Schuster, Single-step electrochemical machining of complex nanostructures with ultrashort voltage pulses, Applied Physics Letters Vol. 82(19), pp. 3327-3329 (2003).
[39] R. Schuster, Electrochemical Microstructuring with short voltage pulses, Chemical Physics and Physical Chemistry, Vol. 8, pp. 34-39 (2007).
[40] Y. Li, Y. Zheng, G. Yang and L. Q. Peng, Localized electrochemical micromachining with gap control, Sensors and Actuators A, Vol. 8, pp. 144-148 (2003).
[41] S. H. Ahn, S. H. Ryu, D. K. Choi and C. N. Chua, Electro-chemical micro drilling using ultra short pulses, Precision Engineering, Vol. 28, pp. 129-134 (2004).
[42] M. Kock, V. Kirchner and R. Schuster, Electrochemical micromachining with ultra-short voltage pulses-a versatile method with lithographical precision, Electrochemical Acta Vol. 48, pp. 3213-3219(2003).
[43] B. H. Kim, S. H. Ryu, D. K. Choi, and C. N. Chu, Micro electrochemical milling, Journal of Micromechanics and Microengineering, Vol. 15(1), pp. 124-129 (2004).
[44] P. Allongue, P. Jiang, V. Kirchner and A. L. Trimmer, and R. Schuster, Electrochemical micromachining of p-type silicon, Journal of Physical Chemistry B, Vol. 108, pp. 14434-14439 (2004).
[45] B. H. Kim, C. W. Na, Y. S. Lee, D. K. Choi and C. N. Chu, Micro electrochemical machining of 3D micro structure using dilute sulfuric acid, CIRP Annals - Manufacturing Technology, Vol. 54 pp. 191-194 (2005).
[46] B. H. Kim, B. J. Park and C. N. Chu, Fabrication of multiple electrodes by reverse EDM and their application in micro ECM, Journal of Micromechanics and Micro-engineering, Vol. 16 pp. 843-850 (2006).
[47] M. S. Park and C. N. Chu, Micro-electrochemical machining using multiple tool electrodes, Journal of Micromechanics and Micro-engineering, Vol. 17(8), pp. 1451-1457 (2007).
[48] B. J. Park , B. H. Kim and C. N. Chu, The effects of tool electrode size on characteristics of micro electrochemical machining, CIRP Annals - Manufacturing Technology, Vol. 55(1) , pp. 197-200 (2006).
[49] Z. Zhang, D. Zhu, N. S. Qu and M. Wang, Theoretical and experimental investigation on electrochemical micromachining, MICROSYSTEM technologies-micro-and nanosystems-information storage and processing systems, Vol. 13, pp.607-612 (2007).
[50] H. S. Shin, B. H. Kim and C. N. Chu, Analysis of the side gap resulting from micro electrochemical machining with a tungsten wire and ultrashort voltage pulses, Journal of Micromechanics and Micro-engineering, Vol. 18(8), pp. 075009-075014 (2008).
[51] D. Maria, S. Joshi and S. K. Maria, Modeling of electrochemical micromachining comparison to experiments, Journal of Micro-Nanolithography MEMS and MOEMS, Vol. 7(3), pp. 0330151-0330157 (2008).
[52] S. H. Ryu, Micro fabrication by electrochemical process in citric acid electrolyte, Journal of Materials Processing Technology, Vol. 209, pp.2831-2837 (2009).
[53] C. H. Jo, B. H. Kim and C. N. Chu, Micro electrochemical machining for complex internal micro features, CIRP Annals – Manufacturing Technology, Vol. 58, pp. 181-184 (2009).
[54] J. J. Maurer, J. J. Mallett and J. L. Hudson, Electrochemical micromachining of Hastelloy B-2 with ultra-short voltage pulses, Electrochimica Acta, Vol. 55, pp. 952-958 (2010).
[55] H.T. Liu, Waterjet technology for machining fine features pertaining to micro-machining. Journal of Manufacturing Processes, Vol. 12, pp. 8–18 (2010).
[56] D.S. Miller, Micromachining with abrasive waterjets, Journal of Materials Processing Technology, Vol. 149, pp. 37–42 (2004).
[57] H. Nouraei, A. Wodoslawsky, M. Papini and J.K. Spelt, Characteristics of abrasive slurry jet micro-machining: a comparison with abrasive air jet micro-machining, Journal of Materials Processing Technology, Vol. 213, pp. 1711–1724 (2013).
[58] K. Kowsari, H. Nouraei, D.F. James, J.K. Spelt and M. Papini, Abrasive slurry jet micro-machining of holes in brittle and ductile materials, Journal Material Processing Technology, Vol. 214, pp. 1909-1920 (2014).
[59] J. Kozak, K.P. Rajurkar and R. Balkrishna, Study of electrochemical jet machiningprocess. Journal of Manufacturing Science and Engineering, Vol. 118.4, pp. 490–498 (1996).
[60] M. Sen and H.S. Shan, Analysis of hole quality characteristics in the electro jetdrilling process, International Journal of Machine Tools and Manufacture, Vol. 45, pp. 1706–1716 (2005).
[61] D. Zhu, N.S. Qu, H.S. Li, Y.B. Zeng, D.L. Li and S.Q. Qian, Electrochemical micromachining of microstructures of micro hole and dimple array, CIRP Annals - Manufacturing Technology, Vol. 58, pp. 177–180 (2009).
[62] M. Sen and H.S. Shan, A review of electrochemical macro-to micro-hole drilling processes, International Journal of Machine Tools and Manufacture, Vol. 45, pp. 137–152 (2005).
[63] J. Kozak, K.P. Rajurkar and R. Balkrishna, Study of electrochemical jet machining process, Journal of Manufacturing Science and Engineering, Vol. 118, pp. 490–498 (1996).
[64] W. Natsu, T. Ikeda and M. Kunieda, Generating complicated surface with electrolyte jet machining, Precision Engineering, Vol. 31, pp. 33-39 (2006).
[65] W. Natsu, S. Ooshiro and M. Kunieda, Research on generation of three-dimensional surface with micro-electrolyte jet machining, CIRP Journal Manufacturing Science and Technology, Vol. 1, pp. 27–34 (2008).
[66] M. Hackert-Oschaetzchen, A. Martin, G. Meichsner, M. Zinecker, and A. Schubert, Micro structuring of carbide metals applying jet electrochemical machining, Precision Engineering, Vol. 37, pp. 621–634 (2013).
[67] L. Yong and H. Ruiqin, Micro electrochemical machining for tapered holes of fuel jet nozzles, Procedia CIRP, Vol. 6, pp. 395-400 (2013).
[68] R.J.K. Wood and S.A. Fry, The synergistic effect of cavitation erosion and corrosion for Copper and Cupro-nickel in seawater, Journal of Fluids Engineering, Vol. 111, pp. 271–277 (1989).
[69] R.J.K. Wood, Erosion–corrosion interactions and their effect on marine and offshore materials, Wear, Vol. 261, pp. 1012–1023 (2006).
[70] K.S. Tan, J.A. Wharton and R.J.K Wood, Solid particle erosion–corrosion behaviorof a novel HVOF nickel aluminum bronze coating for marine applications-correlation between mass loss and electrochemical measurements, Wear, Vol. 258, pp. 629–640 (2005).
[71] A. Neville and B.A.B McDougall, Electrochemical assessment of erosion–corrosion of commercially pure titanium and a titanium alloy in slurry impingement, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Application, Vol. 216, pp. 31–41 (2002).
[72] S.S. Rajahram, T.J. Harvey and R.J.K Wood, Erosion–corrosion resistance of engineering materials in various test conditions, Wear, Vol. 267, pp. 244–254 (2009).
[73] Z. Liu, H. Nouraei, M. Papini and J.K. Spelt, Abrasive enhanced electrochemical slurry jet micro-machining: Comparative experiments and synergistic effects, Journal of Materials Processing Technology, Vol. 214, pp. 1886-1894 (2014).
[74] 胡啟章編著,電化學原理與方法,五南圖書 (2002).
[75] 田福助編著,電化學基本原理與應用,五洲出版社 (2004).
[76] 朱樹敏編著,電化學加工技術,化學工業出版社(2006).
指導教授 洪勵吾 審核日期 2015-11-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明