博碩士論文 89322011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.139.108.19
姓名 洪汶宜(Wen-Yi Hung)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 加勁擋土牆的斷裂破壞行為與內部穩定分析
(Breaking Failure Behavior and Internal Stability Analysis of Geosynthetic Reinforced Earth Walls)
相關論文
★ 鋼筋混凝土構架制震設計與分析★ 版牆結構隔減震設計
★ 砂土層中隧道開挖引致之地盤沉陷與破壞機制及對既存基樁之影響★ 以離心模型試驗探討逆斷層作用下單樁與土壤互制反應
★ 連續壁防治土壤液化之初步研究★ 符合設計譜人工地震之相位角對樓板反應譜之影響
★ 攝影測量在離心模擬試驗之應用-以離心隧道模型之地表沉陷量量測為例★ 樁基礎橋梁地震反應分析
★ 沉箱式碼頭受震反應的數值分析★ 軟土隧道襯砌應力與地盤變位之數值分析
★ 沉箱碼頭受震反應及側向位移分析★ 潛盾隧道開挖面穩定與周圍土壓力之離心模擬
★ 利用連續壁防治土壤液化之探討★ 地理資訊系統應用於員林地區液化災損及復舊調查之研究
★ Nakamura方法估算土壤第一模態頻率之適用性研究★ 黏性土層中隧道開挖引致之地盤沉陷及破壞機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 加勁擋土結構(reinforced soil structures或稱mechanically stabilized earth walls)於1980年代後期引進台灣,由於高分子聚合物的快速研發,各式加勁材料及加勁擋土結構系統也迅速地蓬勃發展。其優點在於可大量減少施工經費、縮短工期、減少不均勻沈陷、容許較大變形、耐震性能較佳及可植生美化景觀等。根據不同破壞面形狀與土壓力分佈的假設,目前已發展出許多加勁擋土牆的設計方法,但是針對相同的加勁擋土牆,不同方法的設計結果差異甚大,因此如何評估牆體臨界破壞的狀態是相當重要的議題。此外,台灣的山坡陡峻,加勁邊坡之坡面傾斜度較高,高度亦常達20~40公尺,超過一般國際慣用高度,因此設計時更需小心謹慎。現有規範針對雙階式加勁擋土牆(superimposed geosynthetic reinforced earth wall)的設計規定,多未以全尺寸試驗或物理模型試驗的方式加以驗證,因此,不同退階距離(offset distance)和加勁材料長度對牆體穩定性與破壞面位置的影響是需要加以研究的。
本研究以中央大學地工離心機進行離心模型試驗,探討加勁擋土牆的斷裂破壞行為,並由試驗結果進行內部穩定分析。本研究之目的有三個:(1)釐清加勁材料強度在離心模型試驗中的尺度因子;(2)對加勁擋土牆的內部斷裂破壞提出新的評估方法,使設計結果能更接近破壞臨界的狀態;(3)檢核美國聯邦高速公路管理局(FHWA)對雙階式加勁擋土結構的設計方法。
本研究進行18組單階式加勁擋土牆與29組雙階式加勁擋土牆之離心模型試驗,由試驗結果可以得知:(1)本研究所提出之修正側向土壓力設計法(modified lateral earth pressure design method),可根據加勁擋土牆的幾何條件與土壤性質,準確的評估加勁擋土結構的加勁材料強度與加勁間距,使設計結果接近臨界破壞的狀態。(2)本研究所提出之加勁擋土結構牆體穩定評估法(RESS assessment),可根據所選用的加勁材料強度、加勁間距與土壤條件,準確的評估加勁結構的臨界高度,使設計結果接近臨界破壞的狀態。(3)美國聯邦高速公路管理局對雙階式加勁擋土牆的設計規定需進行修正:a. 當退階距離小於 (H1+H2)/6.8時,雙階式加勁擋土牆可視為單階式加勁擋土牆設計;b. 當退階距離介於(H1+H2)/6.8與H2cot(45+φ/2)之間時,雙階式加勁擋土牆可視為複合式加勁擋土牆設計;c. 當退階距離介於H2cot(45+φ/2) 與H2tan(90-φ)之間時,上階可視為單階加勁擋土牆設計,下接則視為複合式加勁擋土牆設計;d. 當退階距離大於H2tan(90-φ)時,雙階式加勁擋土牆可視為獨立兩個單階加勁擋土牆分別設計。(4)以顆粒性土壤為背填材料之加勁擋土牆破壞時,其加勁材料強度在離心模型試驗中的尺度因子為1/N。(5)不論是單階式加勁擋土牆還是雙階式加勁擋土牆,傳統平面破壞面(破壞面夾角(β’+φ)/2)即可完整包絡破壞區域。設計時使用傳統平面破壞面,可簡化美國聯邦高速公路管理局之加勁擋土結構的設計與施工規範中對雙階式加勁擋土牆破壞面位置的決定方式。(6)試驗結果的回饋分析顯示,針對8層至16層的加勁擋土牆,其內部側向土壓力係數會隨著加勁層數的增加而減小;當加勁層數大於16層時,土壓力係數則趨於定值。
摘要(英) The purposes of this study are threefold: (1) clarify the scaling factor of the reinforcement strength; (2) propose the assessment methods for evaluating internal stability of the geosynthetic reinforced earth structures to close to the verge of failure; (3) examine the empirical design rules for the design of superimposed geosynthetic reinforced earth wall (SGREW) in FHWA guidelines. To meet these purposes, a total of 47 models of geosynthetic reinforced earth structures were tested using geotechnical centrifuge in this study. From this study, two convenient assessment methods were proposed enabling the accurate evaluation of the internal stability of geosynthetic reinforced earth structures on the verge of failure. From the observation and the analysis of the modeling test results, conclusions are (1) the proposed modified lateral earth pressure design method is for evaluating the required reinforcement spacing or reinforcement strength for geosynthetic reinforced earth structures by the use of the factor of Rf which increases with increasing wall inclination and reinforcement layers; (2) the proposed RESS assessment is for estimating the critical wall height for a geosynthetic reinforced earth structures by the use of factor of Am which increases with increasing wall inclination and reinforcement layers; (3) for a SGREW, if the offset distance is smaller than (H1+H2)/6.8 instead of (H1+H2)/20 stipulated in FHWA guidelines, it should be designed as a single wall; if the offset distance is between (H1+H2)/6.8 and H2cot(45+φ/2), it should be designed as a composite wall; if the offset distance is between H2cot(45+φ/2) and H2tan(90-φ), it should be designed as two single walls with different reinforcement lengths; if the offset distance is greater than H2tan(90-φ), it should be considered as two single independent walls; (4) in centrifuge modeling, the scaling factor of reinforcement strength for geosynthetic reinforced earth structures at failure is 1/N; (5) the failure plane with angle of (β’+φ)/2 can envelop the whole fractures of reinforcement and fit well to the failure wedge, where β’ is the equivalent wall inclination and φ the soil friction angle. Thus, the failure plane angle of a SGREW can be determined using (β’+φ)/2 instead of using complicated factors in FHWA guidelines; (6) for a given geosynthetic reinforced earth structure, if the reinforcement layers are between 8 and 16, the modified lateral earth pressure coefficient Ka’ decreases with decreasing wall inclination and increasing reinforcement layers; however, if the reinforcement layers are greater than 16, the modified lateral earth pressure coefficient Ka’ remains constant.
關鍵字(中) ★ 離心模型試驗
★ 退階距離
★ 尺度因子
★ 雙階式加勁擋土牆
★ 加勁擋土結構
關鍵字(英) ★ scaling factor
★ offset distance
★ superimposed geosynthetic reinforced earth wall
★ geosynthetic reinforced earth structure
論文目次 摘要......................................................I
Abstract................................................III
Table of Contents.........................................V
List of Tables.........................................VIII
List of Figures..........................................IX
Notations............................................. XV
CHAPTER 1 INTRODUCTION...................................1
1-1 Motivation.....................................1
1-2 Purpose of Study and Research Methods..........3
1-3 Overview of Dissertation.......................4
CHAPTER 2 LITERATURE REVIEW..............................5
2-1 Introduction...................................5
2-2 Scaling Factor of Reinforcement Strength.......5
2-3 Various Design Guidelines for Geosynthetic Reinforced Soil Structures................................7
2-3-1 TPCEA: Reinforced soil structures design and construction guidelines...................................7
2-3-2 FHWA: Mechanically stabilized earth walls and reinforced soil slopes design and construction guidelines...............................................10
2-3-3 British standard...................................13
2-3-4 Other methods......................................14
2-4 The Effect of Reinforcement Material on Soil Strength.................................................15
2-5 Centrifuge Modeling for Geosynthetic Reinforced Earth Structures.........................................17
2-6 Stability of Superimposed Geosynthetic Reinforced Earth Structures..............................21
CHAPTER 3 TEST APPARATUS AND MATERIALS..................36
3-1 Introduction........................................36
3-2 Principles of Centrifuge Modeling...................36
3-2-1 Scaling law of centrifuge modeling test............37
3-2-2 Selection of operative centrifuge radius...........38
3-2-3 Modeling of models.................................41
3-2-4 Modeling errors of centrifuge modeling tests.......41
3-3 Test Facilities.....................................43
3-3-1 NCU Geotechnical Centrifuge........................43
3-3-2 Container..........................................44
3-3-3 Traveling Pluviation Apparatus.....................44
3-4 Soil and Reinforcement Materials..............46
3-4-1 Characteristics of Fulung sand.....................46
3-4-2 Properties of reinforcement materials..............46
CHAPTER 4 TEST PROGRAM..................................56
4-1 Introduction........................................56
4-2 Vertical Geosynthetic Reinforced Earth Wall with Sandy Backfill...........................................57
4-2-1 Model design .......................................57
4-2-2 Model construction.................................59
4-3 Superimposed Geosynthetic Reinforced Earth Wall with Sandy Backfill...........................................60
4-3-1 Model design .......................................60
4-3-2 Model construction.................................63
4-4 Centrifuge Testing Procedure........................64
CHAPTER 5 SCALING FACTOR OF REINFORCEMENT STRENGTH IN CENTRIFUGE MODELING TESTS................................70
5-1 Introduction........................................70
5.2 Reproducibility of Test.............................71
5-3 Observation of Failure Progress of VGREWs...........72
5-4 Scaling Factor of Reinforcement Strength............74
5-4-1 Scaling scheme applied to wall height and reinforcement spacing only...............................75
5-4-2 Scaling scheme applied to reinforcement strength only.....................................................77
5-4-3 Scaling scheme applied to wall height and reinforcement spacing and strength.......................77
CHAPTER 6 FAILURE ASSESSMENT OF GEOSYNTHETIC REINFORCED EARTH STRUCTURES.........................................93
6-1 Introduction........................................93
6-2 Internal Stability Assessment by Modified Lateral Earth Pressure Design Method.............................94
6-2-1 Assessment for VGREWs..............................94
6-2-2 Assessment for geosynthetic reinforced earth slopes...................................................98
6-2-3 Assessment of lateral earth pressure coefficient for designing geosynthetic reinforced earth structures......100
6.3 Internal Stability Assessment by RESS Assessment...102
6-4 Design procedure...................................109
6-5 Verification for Design Methods....................112
CHAPTER 7 FAILURE BEHAVIOR AND INTERNAL STABILITY ANALYSIS OF SUPERIMPOSED GEOSYNTHETIC REINFORCED EARTH WALLS...................................................127
7-1 Introduction.......................................127
7-2 Reproducibility of Test............................129
7-3 Failure Behavior...................................130
7-4 Recommendation for Modification of FHWA Guidelines Regarding SGREW.........................................135
7-5 Internal Stability Analysis for SGREWs.............136
7-6 Design Procedures and Requirements.................139
CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS..............160
8-1 Conclusions........................................160
8-2 Recommendations....................................162
References..............................................163
Appendix І Numerical Analysis of All The Models........171
Appendix ІІ Design Example for VGREW...................195
Appendix ІІІ Design Example for SGREW..................198
參考文獻 1. 李咸亨,「坡地工程中加勁擋土牆之設計要點」,山坡地和土石流對土建工程之影響研討會,台灣省土木技師公會,12/18-19,第15-19頁,台北市(1998)。
2. 李咸亨,「國內近年來加勁擋土結構之破壞案例探討」,加勁擋土結構之最新發展研討會,1月26日,第46-52頁,台北市(2000)。
3. 李咸亨、連偉智、潘子儀、許翔泉、許澤華、藍衛信,『高精度加勁擋土牆設計方法』,地工加勁結構物概念設計研討會,高雄,第1-8頁(2002)。
4. 周禮輝,「集集地震中加勁擋土牆之破壞調查與變形分析」,碩士論文,國立成功大學,台南,2001。
5. 陳昱宏,「位於斜坡上擋土牆之地震中破壞調查與變形分析」,碩士論文,國立成功大學,台南,2001。
6. 蔣炎宗,「不織布加勁擋土墻之力量行為試驗分析」,碩士論文,國立台灣工業技術學院營建工程技術研究所,台北市,1996。
7. 謝宗榮,「柔性加勁擋土墻之全非線性分析與設計原理」,博士論文,國立台灣工業技術學院營建工程技術研究所,台北市,1996。
8. 謝宗榮、李咸亨,「施工方式對加勁擋土牆回折端力學行為之影響」,第四屆三軍官校基礎學術研討會,鳳山(1997)。
9. 周南山、黃景川、吳淵洵、范嘉程、趙紹錚、李維峰,地工合成材料應用於加勁擋土結構之相關規範與招標措施,行政院公共工程委員會專案研究計畫,計畫編號Pcc89-技-04(2000)
10. Al Hattamleh, O. and Muhunthan, B., “Numerical procedures for deformation calculations in the reinforced soil walls,” Geotextiles and Geomembranes, Vol. 24, No. 1, pp. 52-57 (2006).
11. Allen, T.M., Bathurst, R.J., Holtz, R.D., Walters, D. and Lee, W.F., “A new working stress method for prediction of reinforcement loads in geosynthetic walls,” Canadian Geotechnical Journal, Vol. 40, pp. 976-994 (2003).
12. ASTM D4595-86, Test method for tensile properties of geotextiles by the wide-width strip method, American society for testing and materials, Philadelphia, PA, USA
13. Bathurst, R.J., Walters, D.L., Esfehani, M., El-Emam, M. and Blatz, J.A., “Physical modeling of geosynthetic walls and embankments,” Proceedings of the International Conference on Physical Modeling in Geotechnics: ICPMG ’02 (eds. Phillips, Guo, Popescu), Newfoundland, Canada, pp. 21-30 (2002).
14. Bathurst, R.J., Allen, T.M. and Walters, D.L, “Reinforcement loads in geosynthetic walls and the case for a new working stress design method,” Geotextiles and Geomembranes, Vol. 23, No. 4, pp. 287-322 (2005).
15. Chang, T.T., Guo, S.X. and Chen, T.J., “Consideration of geotextile for applying and designing reinforced soil structures”, Sino-Geotechnics, No. 32, pp. 22-40 (1990). (In Chinese)
16. Chen, H.W., Centrifuge modeling tests on laterally loaded caisson type piles in sandy slope, Ph. D. Thesis, National Central University, Jhongli, Taiwan (1999).
17. Chen, H.T., Hung, W.Y., Chang, C.C., Chen, Y.J and Lee, C.J, “Centrifuge modeling test of a geotextile-reinforced wall with a very wet clayey backfill.” Geotextiles and Geomembranes, Vol. 25, No. 6, pp. 346–359 (2007).
18. Chen, H.T., Hung, W.Y., Chen, P.W. and Lee, C.J., “Improvement of the stability of a vertical geotextile reinforced earth wall backfilled with low strength clayey soil,” International Journal of Physical Modelling in Geotechnics, Vol. 7, No. 2, pp. 35-45 (2007).
19. Chen, H.T., Hung, W.Y., Chang, C.X. and Lee, C.J, “Earth pressure distribution within the geosynthetic reinforced earth wall”, Journal of the Taiwan Society of Public Works, Vol.3, No.1, pp.59~68 (2007).
20. Chen, J.W., Wu, Z.X. and Claybourn, A.F., “Comparison of different design method for geotextile reinforced retaining walls”, Sino-Geotechnics, No. 43, pp. 43-49 (1993). (In Chinese)
21. Chen, R.H. and Hong, Y.S., “Stabilization of landslides”, Sino-Geotechnics, No. 72, pp. 5-12 (1999). (In Chinese)
22. Chen, R.H., “Application of geosynthetics to waste landfills”, Sino-Geotechnics, No. 71, pp. 57-64 (1999). (In Chinese)
23. Chou, N. S., “Design and application of geosynthetic reinforced retaining structures to roadways and high speed railways (1)”, Modern construction, No. 216, pp. 11-18 (1997). (In Chinese)
24. Chou, N. S., “Design and application of geosynthetic reinforced retaining structures to roadways and high speed railways (2)”, Modern construction, No. 217, pp. 23-30 (1998a). (In Chinese)
25. Chou, N. S., “Design and application of geosynthetic reinforced retaining structures to roadways and high speed railways (3)”, Modern construction, No. 218, pp. 19-28 (1998b). (In Chinese)
26. Chou, N.N.S., Huang, C.C., Fan, J.C., Wu, Y.X., Tong, X.R., and Lee, M. X, Reinforced soil structures design and construction guidelines, Taipei Professional Civil Engineering Association (1998). (In Chinese)
27. CNS 13298, Method of test for water permeability of geotextiles by permittivity, Bureau of standards, Metrology and Inspection (1999)
28. CNS 13299, Method of test for trapezoid tearing strength of geotextiles, Bureau of standards, Metrology and Inspection (1999)
29. CNS 13300, Method of test for tensile properties of geotextiles by the wide-width strip, Bureau of standards, Metrology and Inspection (1999)
30. CNS 13482, Method of test for effects of temperature on stability of geotextiles, Bureau of standards, Metrology and Inspection (1999)
31. CNS 13483, Method of test for breaking load and elongation of geotextiles (grab method), Bureau of standards, Metrology and Inspection (1999)
32. CNS 14259, Standard practice for sampling of geosynthetics for testing, Bureau of standards, Metrology and Inspection (1999)
33. CNS 14260, Method of test for measuring nominal thickness of geotextiles and geomembranes, Bureau of standards, Metrology and Inspection (1999)
34. CNS 14261, Method of test for determining the (in-plane) flow rate per unit width and hydraulic transmissivity of a geosynthetic using a constant head, Bureau of standards, Metrology and Inspection (1999)
35. CNS 14262, Method of test for determining apparent opening size of a geotextile, Bureau of standards, Metrology and Inspection (1999)
36. CNS 14263, Method of test for index puncture resistance of geotextiles, geomembranes, and related products, Bureau of standards, Metrology and Inspection (1999)
37. CNS 14278, Method of test for abrasion resistance of geotextiles (sand paper/sliding block method), Bureau of standards, Metrology and Inspection (1999)
38. CNS 14279, Method of test for measuring mass per unit area of geotextiles, Bureau of standards, Metrology and Inspection (1999)
39. Das, B. M., 2002. Principles of geotechnical engineering, 5th edition, Brooks/Cole Thomson Learning.
40. Elias, V., Christopher, B.R., Berg, R.R., Mechanically stabilized earth walls and reinforced soil slopes design and construction guidelines. U.S., Department of Transportation Federal Highway Administration (FHWA), FHWA-NHI-00-043 (2001).
41. Fan, C.C., and Chou, Nelson N.S., “Study of guidelines for design and construction of reinforced soil structures”, Sino-Geotechnics, No. 70, pp. 93-106 (1998). (In Chinese)
42. Fang, M.L., “Design and construction of reinforced retaining walls for Taipei-Ilan expressway”, Sino-Geotechnics, No. 85, pp. 35-42 (2001). (In Chinese)
43. Fretti, C., Lo Presti, D.C.F. and Pedroni, S., “A pluvial deposition method to reconstitute well-graded sand specimens,” Geotechnical Testing Journal, GTJODJ, Vol. 18, No. 2, pp. 292-298 (1995).
44. Gooding, D.J. and Stantamarina, J.C., “Reinforced earth and adjacent soils: centrifuge modeling study,” Journal of Geotechnical Engineering, Vol. 115, No. 7, pp. 1021-1025 (1989).
45. Hsieh, C.W., “Introduction to the standard test methods for geosynthetics”, Sino-Geotechnics, No. 71, pp. 13-28 (1998). (In Chinese)
46. Hsieh, C.W., Wu, C.H., Hsieh, M.W., Ho, Y.H., Lin, C.K., Lee, Y.C., Chang, T.T, Lee, W.F., “Introduction to geotextile tensile tests”, Sino-Geotechnics, No. 83, pp. 63-68 (2001). (In Chinese)
47. Hwu, B.L., “Design and application of AASHTO M 228-96 geotextile specifications”, Sino-Geotechnics, No. 71, pp. 5-12 (1999).
48. Izawa, J., Kuwano, J., and Takahashi, A., “Behavior of steep geogrid-reinforced embankments in centrifuge tilting tests,” Proceedings of the International Conference on Physical Modeling in Geotechnics: ICPMG ’02 (eds. Phillips, Guo, Popescu), Rotterdam, Balkema, pp. 993-998 (2002).
49. Kazimierowicz-Frankowska, K., “A case study of a geosynthetic reinforced wall with wrap-around facing,” Geotextiles and Geomembranes, Vol. 23, No. 1, pp. 107–115 (2005).
50. Ko, H.Y., “Summary of the state-of-the-art in centrifuge model testing,” Centrifuge in soil mechanics (eds. Craig, W.H., James, R.G. and Schofield, A.N.), Balkema, Rotterdam, pp. 11-18 (1988).
51. Kuerbis, R. and Vaid, Y.P., “Sand sample preparation: the slurry deposition method,” Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, Vol. 28,No. 4, pp. 107-118 (1988).
52. Lai, S.R. and Chen, T.J., “Design and construction of reinforced soil retaining structures”, Sino-Geotechnics, No. 17, pp. 45-56 (1987). (In Chinese)
53. Lai, S.P., Liu, C.N. and Kuo, S.H., “Practice of MSE walls construction using geosynthetics reinforcement”, Sino-Geotechnics, No. 85, pp. 25-34 (2001). (In Chinese)
54. Lai, T.Y., Borja, R.I., Duvernay, B.G. and Meehan, R.L., “Capturing strain localization behind a geosynthetic-reinforced soil wall,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 27, pp. 425-451 (2003).
55. Law, H., Ko, H.Y., Goddery, T. and Tohda, J., “Prediction of the performance of a geosynthetic-reinforced retaining wall by centrifuge experiments,” Geosynthetic- Reinforced Soil Retaining Walls (ed. Wu, J.T.H.), Balkema, Rotterdam, pp. 347-360 (1992).
56. Lee, C.C., “Stresses distribution of geotextile reinforced retaining walls”, Sino-Geotechnics, No. 32, pp. 5-12 (1990). (In Chinese)
57. Lee, S.H., “Post-earthquake investigation on several geosynthetic-reinforced soil retaining walls during the Hanshin-Awaji earthquake of Japan”, Modern Construction, No. 210, pp. 24-49 (1997). (In Chinese)
58. Lee, S.H. and Wang, Y.C., “Reinforcement mechanism of flexible surround,” Proceedings of the 4th military symposium on foundational science, Fengshan, pp. 1205-1211 (1997)
59. Lemonnier, P., Soubra, A.H., Kastner, R., “Variational displacement method for geosynthetically reinforced slope stability analysis: Ⅰ. Local stability,” Geotextiles and Geomembranes, Vol. 16, No. 1, pp. 1-25 (1998a).
60. Lemonnier, P., Soubra, A.H., Kastner, R., “Variational displacement method for geosynthetically reinforced slope stability analysis: Ⅱ. Global stability,” Geotextiles and Geomembranes, Vol. 16, No. 1, pp. 27-44 (1998b).
61. Leshchinsky, D. and Boedeker, R.H., “Geosynthetic reinforced soil structures,” Journal of Geotechnical Engineering, Vol.115, No. 10, pp. 1459-1478 (1989).
62. Leshchinsky, D. and Han, J., “Geosynthetic reinforced multitiered walls,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 12, pp. 1225-1235 (2004).
63. Lin, C., “Reasonable selection and examination of geosynthetics”, Sino-Geotechnics, No. 43, pp. 23-31 (1993). (In Chinese)
64. Ling, H.I., Leshchinsky, D. and Chou, N. S., “Post-earthquake investigation on several geosynthetic-reinforced soil retaining walls and slopes during the Ji-Ji earthquake of Taiwan”, Soil Dynamics and Earthquake Engineering, Vol.21, No. 4, p.p.297-313 (2001).
65. Lin, S.S., “Comparison of five different geosynthetics design codes”, Sino-Geotechnics, No. 71, pp. 43-46 (1999). (In Chinese)
66. Lo Presti, D.C.F., Berardi, R., Pedroni, S. And Crippa, V., “A new traveling sand pluviator to reconstitute Specimens of well graded silty sands,” Geotechnical Testing Journal, GTJODJ, Vol. 15, No. 2, pp. 18-26 (1993).
67. Lord Jr, E., “Geosynthetic/soil studies using a geotechnical centrifuge,” Geotextiles an Geomembranes, Vol. 6, pp.133-156 (1987).
70. Michell, J.K., Jaber, M., Shen, C.K. and Hua, Z.K., “Behavior of reinforced soil walls in centrifuge model tests,” Proceedings of the international conference on geotechnical centrifuge modelling 1988, Paris, pp. 259-271 (1988).
71. Mitchell, R.J., “Centrifuge modeling as a consulting tool,” Journal of Canada Geotech, Vol. 28, pp. 162-167 (1991).
72. Nouri, H., Fakher, A. and Jones, C.J.F.P., “Development of Horizontal Slice Method for seismic stability analysis of reinforced slopes and walls,” Geotextiles and Geomembranes, Vol. 24, No. 2, pp. 175-187 (2006).
73. Park, T. and Tan, S.A, “Enhanced performance of reinforced soil walls by the inclusion of short fiber,” Geotextiles and Geomembranes, Vol.23, No. 4, pp. 348-361 (2005).
74. Paulin, L.C., Elgamal, A.W., Kutter, B., Phillips, R. and Townsend, F., “Centrifuge modeling,” Geotechnical News, pp. 31-33 (1993).
75. Porbaha, A., and Goodings, D.J., “Centrifuge modeling of geotextile-reinforced steep clay slopes,” Canadian Geotechnical Journal, Vol. 33, pp. 696-704 (1996a).
76. Porbaha, A. and Goodings, D. J., “Centrifuge modeling of geotextile-reinforced cohesive soil retaining walls,” Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 10, pp. 840~848 (1996b).
77. Porbaha, A. and Goodings, D.J., “Laboratory investigation of nonuniformly reinforced soil-retaining structure,” Geotechnical Testing Journal, Vol. 20, No. 3, pp. 289-295 (1997).
78. Sawicki, A., “Theoretical analysis of centrifugal model tests on reinforced earth structures,” Geotechnique, Vol. 48, No. 4, pp. 563-567 (1998).
79. Sawicki, A., Mechanics of reinforced soil, Balkema, Rotterdam, pp. 14-15 (2000).
80. Schofield, A.N., “Cambridge geotechnical centrifuge operations,” Geotechnique, Vol. 30, No. 3, pp. 227-268 (1980).
81. Schofield, A.N., Foreword of Geotechnical centrifuge Technology (ed. Taylor, R.N.), Chapman & Hall, pp. vii-xi (1995).
82. Shan, H.Y., “Application of geosynthetics in landfills in hillside areas”, Sino-Geotechnics, No. 73, pp. 57-66 (1999). (In Chinese)
83. Shani, A., “Reinforced earth structure-comparison between different design system,” Proceedings of the 13th Asian regional conference on soil mechanics and geotechnical engineering, India, Kolkata, pp.981-984 (2007).
84. Skinner, G.D and Rowe, R.K., “Design and behavior of a geosynthetic reinforced retaining wall and bridge abutment on a yielding foundation,” Geotextiles and Geomembranes, Vol. 23, No. 3, pp. 235-260 (2005).
85. Su, J.L., “Introduction of the use of geotextile on the applications for harbor and marine engineering”, Harbor and Marine Report Quarterly, Vol. 49, pp. 29-35 (1999). (In Chinese)
86. Suah, P.G. and Goodings, D.J., ”Part 4 geosynthetics in transportation facilities-failure of geotextile-reinforced vertical soil walls with marginal backfill,” Transportation Research Record, Vol. 1772, pp. 183-189 (1989).
87. Sun, H.H., “Landslide remediation- A case study of reinforced slopes”, Sino-Geotechnics, No. 72, pp. 23-34 (1999). (In Chinese)
88. Tatsuoka, F. and Leshchinsky, D., Recent case histories of permanent geosynthetic- reinforced soil retaining walls, Balkma, Rotterdam, 1994.
89. Taylor, R. N., “Centrifuges in modeling: principles and scale effects,” Geotechnical centrifuge technology (ed. Taylor, R.N.), 1st edition, Chapman & Hall, pp. 19-33 (1995).
90. Tsai, W.S. and Holtz, R.D., “Evaluation of geotextiles as separators in roadways”, Sino-Geotechnics, No. 71, pp. 47-56 (1999). (In Chinese)
91. Viswanadham, B.V.S., and Konig, D., “Scaling aspects of a geogrid in a geotechnical centrifuge,” Proceedings of the International Conference on Physical Modeling in Geotechnics: ICPMG ’02 (eds. Phillips, Guo, Popescu), Newfoundland, Canada, pp. 981-986 (2002).
92. Wu, J.T.H., Geosynthetic-reinforced soil retaining walls, Balkma, Rotterdam, 1992.
93. Wu, J.T.H., Barrett, R.K. and Chou, N.N.S, “Develpoing cost-effective GRS walls: recent efforts in Colorado, USA,” Recent case histories of permanent geosynthetic -reinforced soil retaining walls (eds. Tatsuoka, F. and Leshchinsky, D.), Rotterdam: Balkema, pp. 163-180 (1994).
94. Xie, Q. W., Chen, J. H. and Wang, Z. B., “The static and dynamic properties of geosynthetic reinforced soil,” Proceedings of the 10th conference on current researches in geotechnical engineering in Taiwan, Sanshia, Taipei, pp. 1027-1030 (2003).
95. Yoo, N.J., and Ko, H.Y., “Centrifuge modeling of reinforced earth retaining wall,” Proceedings of the international conference on geotechnical centrifuge modelling, Boulder, Colorado, pp. 325-332 (1991).
96. Zhang, W., Lai, Z., and Xu, G., “Centrifuge modeling of geotextile-reinforced cohesionless soil retaining walls,” China Civil Engineering Journal, Vol. 33, No. 3, pp. 84-91 (2000).
97. Zhang, M.X., Javadi, A.A. and Min, X., “Triaxial tests of sand reinforced with 3D inclusions,” Geotextiles and Geomembranes, Vol. 24, pp. 201–209 (2006).
98. Zornberg, J.G., Mitchell, J.K. and Sitar, N., “Testing of reinforced slopes in a geotechnical centrifuge,” Geotechnical Testing Journal, GTJODJ, Vol. 20, No. 4, pp. 470-480 (1997).
99. Zornberg, J.G., Sitar, N. and Mitchell, J. K., “Performance of geosynthetic reinforced slopes at failure,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.124, No.8, pp.670-683 (1998).
100. Zornberg, J.G., Sitar, N. and Mitchell, J. K., “Limit equilibrium as basis for design of geosynthetic reinforced slopes,” Journal of Geotechnical and Geoenvironmental Engineering, Vol.124, No.8, pp.684-698 (1998).
101. Zornberg, J.G. and Arriaga, F., “Strain distribution within geosynthetic-reinforced slopes,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 1, pp. 32-45 (2003).
指導教授 陳慧慈、李崇正
(Huei-Tsyr Chen、Chung-Jung Lee)
審核日期 2008-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明