博碩士論文 103322006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.137.198.130
姓名 張顥(Hao Chang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 二維固體有限元素之幾何非線性動力分析
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 隔震橋梁之最佳化結構控制★ 跨越斷層橋梁之極限動力分析
★ 塑鉸極限破壞數值模型開發★ 橋梁直接基礎搖擺之極限分析
★ 考量斷層錯動與塑鉸破壞之橋梁極限分析★ Impact response and shear fragmentation of RC buildings during progressive collapse
★ 應用多項式滾動支承之隔震橋梁研究★ Numerical Simulation of Bridges with Inclined
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 結構分析之首要目的為決定結構體系在已知載重下所對應構件
中之應力、應變以及位移等資料。在計算力學體系出現之前,大多將
結構劃分為簡單之桿、梁、板、殼等不同類型之構件,透過材料力學
及結構力學推導其受力後之力學模型,並針對複雜之力學問題進行簡
化以便於計算。
隨著電腦計算機之出現,眾多學者結合力學與數值運算而發展出
了計算力學,使得力學理論於應用上更為方便且可處理之問題更為廣
泛。其中以虛功法所推導之非線性有限元素雖可以得到可靠且精確之
分析模擬,但推導過程往往過於複雜,且傳統有限元係以矩陣模式做
為計算之基礎,當結構體系過於龐大且受力模式過於複雜時,往往需
消耗過多計算時間處理矩陣運算,且矩陣運算有時受限於其數學上求
解之奇異狀況而導致數值運算之問題。
本研究採用一簡單之幾何非線性處理之程序,亦即搭配共轉座標
演算法,藉由建立非耦合型態之運動方程式並搭配隱式Newmark-β
法以求解控制方程式,且推導一系列之二維固體元素,進行數值分
析,探討其於高度非線性分析上之能力。
摘要(英) The main idea of structural analysis is to determine the stress, strain and
displacement of the system. Before the computational mechanics had
been developed, several analysis were conducted by treating the
structures as a series of bar, beam, plate and shell members and derived
the simplified governing equations which were based on the mechanics of
material and structural mechanics.
Since the computers have been developed, mechanics finally can combine
with the numerical analysis, the computational mechanics started to be
widely applied and had a great effect on convenience and solving difficult
problems. Among several numerical method, the nonlinear finite element,
which is based on the principle of virtual work, can give more accuracy in
the analysis, but sometimes the derivation is too complicated, also,
traditional finite element method is of coupled matrix formulation, this
phenomenon lead to a difficult point on solving the simultaneous
equations if the structural system is huge enough or the mechanical
behavior is complex, when a system contains the above problems the
matrix calculation will waste too much time or even can make the matrix
solution singular.
In order to solve the problems of traditional finite element, in this study
we consider an easy way to treat the geometric nonlinearity, that is,
corotational formulation, also, constructing the uncoupled-type equations
of motion and solving them by the use of implicit Newmark-β method,
and deriving nonlinear plane solid elements as well as testing their ability
at highly geometrically nonlinear analysis.
關鍵字(中) ★ 計算力學
★ 幾何非線性
★ 共轉座標演算法
★ 非耦合型態
★ 隱式Newmark-β 法
★ 二維固體元素
關鍵字(英) ★ computational mechanics
★ geometric nonlinearity
★ corotational formulation
★ uncoupled
★ implicit Newmark-β method
★ plane solid element
論文目次 摘 要……………………………………………………..……………….I
Abstract………….……………………………………………………….II
誌 謝…………………………………………………...……………….III
目 錄..…………………………………………………..…..…………..IV
表 目 錄………………………………………………..……….……VIII
圖 目 錄………………………………………………..…….………IX
第一章 緒論………………………………………...…..……………….1
1.1 研究動機與目的………………………………..………………1
1.2 文獻回顧……………………………………..…………………2
1.2.1 向量式有限元素法………………….………………….2
1.2.2 幾何非線性有限元素法……………..…………….4
1.3 論文架構…….…………………………………………………7
第二章 幾何非線性有限元素法…………………….……………..8
2.1 平衡方程式與虛功原理…………………………..…………8
2.2 應變與應力分析…………………………………..………..11
2.2.1 參考構形…………………………………..……...…..11
2.2.2 變形梯度…………………………………..……...…..12
2.2.3 應變與應力………………………………….…...…..15
2.2.4 應力與應變描述之空間轉換………………….…..19
2.3 幾何非線性有限元推演法…………….……………………24
2.3.1 更新式增量拉格朗日演算法.………………….…25
2.3.2 更新式增量共轉座標演算法.………………….…29
第三章 二維共轉固體有限元之推導…………………………...…39
3.1 離散模型與控制方程式………………….….………………39
3.2 共轉座標與剛體旋轉……………...………….………………41
3.2.1 共轉座標之取………………………………………..41
3.2.2 剛體旋轉計算………………………………..……..42
3.3 固體元素之節點應力與內力…………………………..……..46
3.3.1 三節點等應元…………………………………..…….47
3.3.2 四節點等參數元……………………………………...56
3.4 固體元素之節點外力…………………………………..……..61
3.4.1 三節點等應變元…………………………...…..……..61
3.4.2 四節點等參數元………...............................…..……..63
3.5 固體元素之節點質量………....................................…..……..64
第四章 採用隱式直接積分法之有限元素……………………..……..74
4.1 隱式 Newmark-直接積分計算程序…………….………74
4.2 二維固體元素勁度比例阻尼力計算……………………….83
第五章 數值算例分析與驗證…………………………………………90
5.1 元素之剛體轉動檢驗…………………………………………90
5.1.1 三節點等應變元之剛體旋轉測試…………………90
5.1.2 四節點等參數元之剛體旋轉測試…………………91
5.2 大變形與大變位之靜力分析…………………….………...…91
5.2.1 柔性懸臂梁受靜態集中載重分析…….………...…92
5.2.2 柔性懸臂梁受靜態均佈載重分析…….………...…93
5.2.3 方形框架之大變位分析….…………………...…...…95
5.2.4 無約束直梁端點受均佈剪應力之運動...……........…96
5.3 結構失穩行為分析…………………………………………....97
5.3.1 底端固接頂端自由之理想柱挫屈分析……...……....98
5.3.2 兩端鉸接之理想柱挫屈分析……...………………....99
5.4 動力分析…………………………………………………......101
5.4.1 兩端固定之繩索大變位振動分析……………......101
5.4.2 單點支承梁受自重之單擺運動………………......102
5.4.3 雷利阻尼之動力歷時分析驗證………………......103
第六章 結論與未來展望…………………………………...….…..…153
6.1 結論……………………………………………………...…153
6.2 未來展望……………………………………………………..156
參考文獻………………………………………………..…….……….157
附圖………..………………………………………………….……….162
參考文獻 [1] Ting, E. C., Shih, C. and Wang, Y. K. (2004), "Fundamentals of a Vector Form Intrinsic Finite Element: Part I. Basic Procedure and a Plane Frame Element," Journal of Mechanics, Vol.20, No.2, pp. 113-122.
[2] Ting, E. C., Shih, C. and Wang, Y. K. (2004), "Fundamentals of a Vector Form Intrinsic Finite Element: Part II. Plane Solid Elements," Journal of Mechanics, Vol.20, No.2, pp. 123-132.
[3] Shih C., Wang, Y. K. and Ting, E. C. (2004), "Fundamentals of a Vector Form Intrinsic Finite Element: Part III. Convected Material Frames and Examples," Journal of Mechanics, Vol.20, No.2, pp. 133-143.
[4] Wang, C. Y., Wang, R. Z., Kang, L. C. and Ting, E. C. (2004), "Elastic-Plastic Large Deformation Analysis of 2D Frame Structure," Proceedings of the 21st International Congress of Theoretical and Applied Mechanics (IUTAM), SM1S-10270, Warsaw, Poland, August 15-21.
[5] Wu, T. Y., Wang, R. Z. and Wang, C. Y. (2006), "Large Deflection Analysis of Flexible Planar Frames," Journal of the Chinese Institute of Engineers, Vol. 29, No. 4, pp. 593-606.
[6] 王仁佐 (2005),「向量式結構運動分析」,國立中央大學土木工程學研究所博士論文,王仲宇、盛若磐。
[7] 莊清鏘、陳詩宏、王仲宇 (2006),〝向量式有限元於結構被動控制之應用〞,固體與結構之工程計算-2006近代工程計算論壇,第1-25頁。
[8] 陳柏宏 (2008),「運用向量式有限元素法於隔震橋梁之非線性動力分析」,國立中央大學土木工程學研究所碩士論文,李姿瑩
[9] 丁承先、王仲宇 (2014),「向量式固體力學」,中央大學工學院,橋梁工程研究中心。
[10] 丁承先、王仲宇、吳東岳、王仁佐、莊清鏘,(2007),「運動解析與向量式有限元(2.0版)」,中央大學工學院,橋梁工程研究中心。
[11] Wempner G. (1969), "Finite Rotations and Small Strains of Flexible Shells," International Journal of Solids and Structures, Vol.5, No.2, pp. 117-153.
[12] Belytschko T. and Hseih B. J. (1973), "Non-linear Transient Finite Element Analysis with Convected Co-ordinates," International Journal for Numerical Methods in Engineering, Vol.7, No.3, pp. 255-271.
[13] Crisfield, M. A. (1990), "A Consistent Co-Rotational Formulation for Non-linear, Three-Dimensional, Beam-Elements," Computer Method in Applied Mechanics and Engineering, Vol.81, No.2, pp. 131-150.
[14] Crisfield, M. A. and Moita, G. F. (1996), "A Co-Rotational Formulation for 2-D Continua Including Incompatible Modes," International Journal for Numerical Methods in Engineering, Vol.39, No.15, pp. 2619-2633.
[15] Moita, G. F. and Crisfield, M. A. (1996), "A Finite Element Formulation for 3-D Continua Using the Co-Rotational Technique," International Journal for Numerical Methods in Engineering, Vol.39, No.22, pp. 3775-3792.
[16] Iura, M. and Atluri, S. N. (1995), "Dynamic Analysis of Planar Flexible Beams with Finite Rotations by Using Inertial and Rotating Frames," Computers & Structures, Vol.55, No.3, pp. 453-462.
[17] Urthaler, Y. and Reddy, J. N. (2005), "A Corotational Finite Element Formulation for the Analysis of Planar Beams," Communications in Numerical Methods in Engineering, Vol.21, No.10, pp. 553 -570.
[18] 蔡松柏、沈蒲生 (2006),「大轉動平面梁有限元分析的共轉座標法」,工程力學,第二十三卷,增刊1,第69-68頁。
[19] 蔡松柏、沈蒲生、湖柏學、鄧繼華 (2009),「基於場一致性的2D四邊形單元的共旋座標法」,工程力學,第二十六卷,第十二期,第31-34頁。
[20] Felippa, C. A. (2000), "A Systematic Approach to the Element-Independent Corotational Dynamics of Finite Elements (Research Grant CU-CAS-00-03)," Center for Aerospace Structures, USA.
[21] Felippa, C. A. (2005), "Unified Formulation of Small-Strain Corotational Finite Elements: I. Theory," Computer Method in Applied Mechanics and Engineering, Vol.194, No.21-24, pp. 2285-2335.
[22] Battini, J. M. (2008), "A Non-linear Corotational 4-Node Plane Element," Mechanics Research Communications, Vol.35, No.6, pp. 408-413.
[23] Yang, Y. B. and Chiou, H. T. (1987), "Rigid Body Motion Test for Nonlinear Analysis with Beam Elements," Journal of Engineering Mechanics, Vol.113, No.9, pp. 1404-1419.
[24] 林詩渤 (2005),「簡易非線性三角板元素」,國立臺灣大學土木工程研究所碩士論文,楊永斌。
[25] Yang, Y. B., Lin, S. P. and Chen, C. S. (2007), "Rigid Body Concept for Geometric Nonlinear Analysis of 3D Frames, Plates and Shells Based on the Updated Lagrangian Formulation," Computer Method in Applied Mechanics and Engineering, Vol.196, No.7, pp. 1178-1192.
[26] Mattiasson, K. (1981), "Numerical Results from Large Deflection Beam and Frame Problems Analysed by Means of Elliptic Integrals," International Journal for Numerical Methods in Engineering, Vol.17, No.1, pp. 145-153.
[27] Bathe, K. J. (1996), Finite Element Procedures, Prentice-Hall Inc., Englewood Cliffs, N. J.
[28] Reddy, J. N. (2008), An Introduction to Continuum Mechanics, Cambridge University Press, New York.
[29] 劉正興、孫雁、王國慶 (2000),「計算固體力學」,上海交通大學出版社,上海。
指導教授 李姿瑩(Tzu-Ying Lee) 審核日期 2016-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明