博碩士論文 102226064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.191.97.229
姓名 林倖妍(Hsing-Yen Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 感溫粉之光譜行為與溫度關聯性之研究
(Study of Temperature Dependence on Reflection Spectrum of Thermochromatic Pigments)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 新型光電生化感測器之分析與研究★ 結合柱狀透鏡陣列之非成像車頭燈光型設計
★ 薄膜電晶體液晶顯示器中視角色偏之優化補償方法★ 特定色度背光模組零組件之光學特性評估
★ 電子紙增亮分析與模擬設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文針對感溫粉溫感變色特性,詳細探討其反射率光譜與溫度之量化關係,並分析與歸納建立量化模型。藉由此量化模型,進一步嘗試將感溫粉應用於固態照明技術中,螢光粉溫度之即時偵測,並以二種不同感溫粉分別驗證其對溫度之偵測能力。
摘要(英) In this thesis, the spectral analysis has been applied on the thermochromatic pigments. In order to get the information of temperature and reflection spectrum, the experimental set up has been established including spectral measurement, temperature controlling, and temperature recoding. At the same time, a quantitative model is established by analyzing the reflection spectra of the thermochromatic pigments. As a result, a novel temperature sensing procedure in phosphor can be further developed with the verification on two different thermochromatic pigments.
關鍵字(中) ★ 感溫粉
★ 光譜
★ 溫度
關鍵字(英)
論文目次 摘要 II
Abstract III
致謝 IV
目錄 VI
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 7
1.3 論文大綱 9
第二章 基本理論 10
2.1 感溫粉之變溫機制與特性 10
2.2 螢光粉的發光原理 13
2.2.1 螢光粉的能階結構 15
2.2.2 螢光粉受熱之影響 17
第三章 感溫粉之實驗備製與模型建立 20
3.1 感溫粉片之備製 20
3.2 感溫粉片頻譜變異量測之架構建立 23
3.2.1 感溫粉片量測實驗架構之建立 23
3.2.2 熱電偶 24
3.2.3 感溫粉片量測實驗架構之溫差分析 25
3.2.4 感溫粉片頻譜量測實驗架構之分析 33
3.3 感溫粉之模型建立 36
第四章 感溫粉模型應用分析與驗證 41
4.1 感溫粉混入螢光粉之溫度偵測 41
4.2 感溫粉混入螢光粉之溫度判定 45
4.3 感溫粉溫度偵測之驗證與分析 54
4.3.1 B55 感溫粉溫度偵測之驗證與分析 55
4.3.2 R65 感溫粉溫度偵測之驗證與分析 57
第五章 結論 67
參考文獻 69
中英名詞對照表 77
參考文獻 [1] J. MOSS, “Pleasure and Illusion in Plato,”Philosophy and Phenomenological Research 72, 503–535 (2006)
[2] The Philosophy Resource Website -Two questions for interpreters http://www.thephilosophyresource.co.uk/the-interpretation/
[3] 陳炳亨,自然與生活科技教學專刊,翰林出版社,台南市,中華民國九十八年二月。
[4] http://www.eoht.info/page/Thermometer
[5] H.C. Bolton, Evolution of the thermometer, The Chemical Publishing Co., Easton, 1990.
[6] 國家度量衡標準實驗室官網,"溫度的單位":克耳文(K),http://goo.gl/cwynDH
[7] B. W. Mangum; G T. Furukawa; Guidelines for Realizing the International Temperature Scale of 1990 (ITS-90), Gaithersburg, 1990.
[8] 上海雙旭電子技術文件,"雙金屬溫度計的原理和使用方法詳細介紹",http://goo.gl/ntJKkT
[9] 伍秀菁、汪若文、林美吟,儀器總覽-基本物理量量測儀器,行政院國家科學委員會精密儀器發展中心,新竹市,中華民國八十七年。
[10] P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Review of scientific instruments 71, 2959 (2000).
[11] M. Duff, and J. Towey, “Two Ways to Measure Temperature Using Thermocouples Feature Simplicity, Accuracy and Flexibility,” Analog Dialogue 44, 3-8 (2010).
[12] R. P. Benedict, Manual on the Use of Thermocouples in Temperature Measurement, United States, 1962.
[13] J. L. Riddle, G. T. Furukawa,and H. H. Plumb, Platinum resistance thermometry, Institute for Basic Standards, United States, 1973
[14] H. J. Kostkowski and R. D. Lee, Theory and Methods of Optical Pyromtery, United States, 1962.
[15] 伍秀菁、汪若文、林美吟,儀器總覽-光學量測儀器,行政院國家科學委員會精密儀器發展中心,新竹市,中華民國八十七年。
[16] Avio Company, "TVS-500EX", http://www.infrared.avio.co.jp/en/products/ir-thermo/lineup/tvs-500ex/
[17] G. Gaussorgues, Infrared Thermography, France,1994.
[18] 楊仲準,"電子儀器與量測技術之溫度量測",http://140.135.72.1/~MSLab/Slides/電子儀器與量測技術_Ch1.pdf
[19] V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG: Ce,” Chem. Mater. 21, 2077-2084 (2009).
[20] L. Robertson, Etude de pigments thermochromes autour du cobalt II, France, 2010.
[21] N. Thomas, “Reversible thermochromic pigments,” U.S. Patent 5,480,482(1996).
[22] 崇裕科技,"感溫變色材料",http://www.colorchange.com.tw/index.php/tw/thermochromic-material.html
[23] Wikicliki website, "Thermochromism",http://wwgou.org/wikicliki/index.php?title=Thermochromism
[24] K. Senga, and M. Ito, “Thermochromic pigment material which has a microcapsular form having non-round particle cross section and has a thermochromic material enclosed in the microcapsules,” U.S. Patent 6,669,765 (2003).
[25] 劉如熹、劉宇恒,發光二極體用氧氮化螢光粉介紹,全華科技圖書股份有限公司,台北市,中華民國九十五年。
[26] J.Gracia, L. Seijo, Z. Barandiarán, D. Curulla, H. Niemansverdriet, and W. van Gennip, “Ab initio calculations on the local structure and the 4f–5d absorption and emission spectra of Ce3+-doped YAG,” J. Lumines. 128, 1248-1254 (2008).
[27] G. Blasse and A. Bril, “A New Phosphor for Flyting-Spot Cathode-Ray Tubes for Color Television: Yellow-Emitting Y3Al5O12-Ce3+,” Appl. Phys. Lett. 11, 53-55 (1967).
[28] G. Blasse and A. Bril, “Investigation of Some Ce3+‐Activated Phosphors,” J. Chem. Phys. 47, 5139-5145 (1967).
[29] D. J. Robbins, “The effects of crystal field and temperature on the photoluminescence excitation efficiency of Ce3+ in YAG,” J. Electrochem. Soc. 126, 1550-1555 (1979).
[30] D. J. Robbins, B. Cockayne, B. Lent, and J. L. Glasper, “The relationship between concentration and efficiency in rare earth activated phosphors,” J. Electrochem. Soc. 126, 1556-1563 (1979).
[31] D. J. Robbins, B. Cockayne, J. L. Glasper, and B. Lent, “The Temperature Dependence of Rare‐Earth Activated Garnet Phosphors I. Intensity and Lifetime Measurements on Undoped and Ce‐Doped Y3Al5O12,” J. Electrochem. Soc. 126, 1213-1220 (1979).
[32] D. J. Robbins, B. Cockayne, J. L. Glasper, and B. Lent, “The Temperature Dependence of Rare‐Earth Activated Garnet Phosphors II. A Comparative Study of Ce3+, Eu3+, Tb3+, and Gd3+ in Y3Al5O12,” J. Electrochem. Soc. 126, 1221-1228 (1979).
[33] M. Batentschuk, B. Schmitt, J. Schneider, and A. Winnacker, “Color engineering of garnet based phosphors for luminescence conversion light emitting diodes (lucoleds),” Proc. MRS 560, 215 (1999).
[34] M. Nazarov, “Luminescence mechanism of highly efficient YAG and TAG phosphors,” M. J. Phy. Sci. 4, 347-356 (2005)
[35] G. Blasse and A. Bril , J. Chem. Phys 47,5139 (1967)
[36] K. Jang, “Excitation-Dependent Emissive Properties of Silicate Phosphor for Light Converted LEDs,” J. Korean Phys. Soc. 55, 1587 (2009).
[37] L. Chen, C. C. Lin, C. W. Yeh, and R. S. Liu, “Light converting inorganic phosphors for white light-emitting diodes,” Materials 3, 2172-2195 (2010).
[38] J. M. Ogiegło, A. Zych, K. V. Ivanovskikh, T. Jüstel, C. R. Ronda, and A. Meijerink, “Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Tb3+,” J. Phys. Chem. A 116, 8464-8474 (2012).
[39] D. J. Robbins, B. Cockayne, B. Lent, and J. L. Glasper, “The relationship between concentration and efficiency in rare earth activated phosphors,” J. Electrochem. Soc. 126, 1556-1563 (1979).
[40] K. Ivanovskikh, J. Ogiegło, A. Zych, C. Ronda, and A. Meijerink, “Luminescence Temperature Quenching for Ce3+ and Pr3+ df Emission in YAG and LuAG,” ECS Journal of Solid State Science and Technology 2, R3148-R3152 (2013).
[41] 劉瑋瑋,白光LED 之螢光粉熱衰探討,國立中央大學光電科學研究所碩士論文,中華民國一百年。
[42] G. Blasse and A. Bril, “A New Phosphor for Flyting-Spot Cathode-Ray Tubes for Color Television: Yellow-Emitting Y3Al5O12-Ce3+,” Appl. Phys. Lett. 11, 53-55 (1967).
[43] G. Blasse and A. Bril, “Investigation of Some Ce3+‐Activated Phosphors,” J. Chem. Phys. 47, 5139-5145 (1967).
[44] D. J. Robbins, “The effects of crystal field and temperature on the photoluminescence excitation efficiency of Ce3+ in YAG,” J. Electrochem. Soc. 126, 1550-1555 (1979).
[45] J. G. Solé, L. E. Bausa, D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids, Universidad Autónoma de Madrid, Madrid, Spain (2005).
[46] S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties,” Mate. Sci. Engineering R 71, 1-34 (2010).
[47] Y. ZHANG, Lan Li, X. ZHANG, Q. Xi, “Temperature effects on photoluminescence of YAG: Ce3+ phosphor and performance in white light-emitting diodes,” J. Rare Earths 26, 446-449 (2008).
[48] J. L. Qin, C. F. Hu, B. F. Lei, J. F. Li, Y. L. Liu, S. P. Ye, and M. Z. Pan, “Temperature-Dependent Luminescence Characteristic of SrSi2O2N2:Eu2+ Phosphor and Its Thermal Quenching Behavior,”J. Mater. Sci. Technol. 30,290-294 (2014)
[49] P. Vitta; P. Pobedinskas, A. Zukauskas, “Phosphor Thermometry in White Light-Emitting Diodes,” IEEE Photonics Technology Letters 19,399-401 (2007)
[50] J. S. Kim, Y. H. Park, S. M. Kim, J. C. Choi, and H. L. Park, “Temperature-dependent emission spectra of M2SiO4: Eu2+ (M=Ca, Sr, Ba) phosphors for green and greenish white LEDs,” Science 133, 455-448 (2005).
[51] A. K. Lunia, S. K. Patra, S. Kumar, S. Singh, S. Pal, and C. Dhanavantri, “Theoretical analysis of blue to white down conversion for light-emitting diode light with yttrium aluminum garnet phosphor,” SPIE Journal of Photonics for Energy 4, 043596-1-11 (2014).
[52] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physics 34, 149-154 (1967).

[53] A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Jüstel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumines. 129, 1356-1361 (2009).
[54] J. Qin, C. Hu, B. Lei, J. Li, Y. Liu, S. Ye, M. Pan,” Temperature-Dependent Luminescence Characteristic of SrSi2O2N2Eu2+ Phosphor and Its Thermal Quenching Behavior,”J. Matter. Sci. Technol. 30, 290-294(2014).
[55] Y. P. Varshni, Physica 34, 149-154 (1967).
[56] R. Hansel, S. Allison, and G. Walker, “Temperature-dependent luminescence of gallium-substituted YAG:Ce,” J. Matter. Sci. 45,146-150 (2009)
[57] Z. He, Z. Li, X. Fan, W. Cheng, J. Ju, Q. Ou, R. Liang, “Photoluminescence enhancement and thermal performance of surface modified Y3Al5O12:Ce3+ phosphor by chemical wet etching,” Function Materials Lett. 6,1350008-1 (2013).
[58] C. C. Chiang, M. S. Tsai, M. H. Hon, “Luminescent Properties of Cerium-Activated Garnet Series Phosphor: Structure and Temperature Effects,” J. Elec. Soc. 155, B517-B520 (2008).
[59] 劉如熹,白光發光二極體製作技術-由晶粒金屬化至封裝,全華圖書股份有限公司,台北縣,中華民國九十七年。
[60] C. C. Lin and R. S. Liu, “Advances in Phosphors for Light-emitting Diodes,” J. Phys. Chem. Lett. 2, 1268–1277 (2011).

[61] A. W. van Herwaarden and P. M. Sarro, “Thermal sensors based on the Seebeck effect,” Sens. Actuators A 10, 321–346 (1986).
[62] T. J. Seebeck, Magnetiche polarisation der metalle und erze durch temperatur-differenz, Abh. Kön. Akad. Wiss. , 265-373 (1822).
[63] A. W. Van Herwaarden and P. M. Sarro, “Thermal sensors based on the seebeck effect,” Sensors and Actuators 10, 321- 346 (1986).
指導教授 楊宗勳、孫慶成(Tsung-Hsun Yang Ching-Cherng Sun) 審核日期 2016-1-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明