博碩士論文 101331601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.218.61.16
姓名 趙佳(zhao Jia)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 運用N-back任務和空間工作記憶訓練分析神經相關性能之ERP和DCM研究
(Neuronal correlates of performance during n- back task and spatial working memory training: an ERP and DCM study)
相關論文
★ 足弓指標參數之比較分析★ 運用腦電波研究中風病人的復健成效 與持續情形
★ 重複間斷性Theta爆發刺激對手部運動之腦波的影響★ Amylose mediated electricity production of Staphylococcus epidermidis for inhibition of Cutibacterium acnes growth
★ 使用虛擬實境系統誘發事件相關電位P300之研究★ 虛擬實境誘發體感覺事件相關電位P300之動態因果模型研究
★ 使用GPU提升事件相關電位之動態因果模型的運算效能★ 基於動態因果模型之老化相關的運動網路研究
★ 應用腦電圖預測中風病人復健情況★ 以益智遊戲進行空間工作記憶訓練在事件相關電位P3上的影響
★ 基於虛擬實境復健之中風後運動網路功能性重組研究★ 應用腦電圖與相關臨床因子預測中風病人復原之研究
★ 中風復健後與虛擬實境物理參數 相關的動作網絡重組★ 以運動指標預測復健成效暨設計復健方針
★ 運用時頻轉換分析方法研究 工作記憶訓練之人類大腦可塑性★ 中風患者在復健後的大腦神經連結的變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在我們的日常生活中,不管是工作還是學習,工作記憶都起到了十分重要的作用,因此工作記憶能力的評估和訓練也隨之成為學者研究的重點。目前來說,對於工作記憶上的評估,一般都採用智力測驗,但是行為資料(智力測驗等)真的可以完全評估當時受試者的神經生理變化?工作記憶訓練真的可以改變我們的大腦嗎?研究首先利用n-back試驗時ERP成份N200和P300與其成績比較,尋找腦波與外在行為的關聯性,並且用N200去評估工作記憶訓練的成效。
本研究招募了三十位中央大學學生為受試者,視力正常且無中樞神經疾病病史,慣用手均為右手。實驗組、對照組(1)與對照組(2)分別有十人。實驗組被要求進行一個與spatial span作業相似的益智遊戲,為期三周,每週五日,每日三十分鐘。對照組(1)則進行與記憶無關的動作控制遊戲,訓練頻率與實驗組同。而對照組(2)不需要接受任何訓練。再由3篇文獻為基礎,建立3種不同的模型,去尋找最適合本研究的神經網路結構。最後,由最佳網路結構去發現訓練前後哪些區域連接出現顯著變化。
用事件相關電位與成績來尋找工作記憶較強的腦波,然而並沒有找到有利的依據。以網頁益智遊戲作為基礎的記憶訓練,從事件相關電位所得到的電生理資料上,3個電極位(C4、T8、P8)出現實驗組N2振幅的增加數值顯著高於對照組,這也表明記憶訓練確有其效果,而且其效果至少可維持一周。小魚急急棒的訓練,並不能對工作記憶產生顯著的影響。
經過DCM的處理,我們發現以網頁益智遊戲作為基礎的記憶訓練,使得我們更合理的去分配大腦的資源。記憶訓練不僅使得Forward中LIPS連接SFG、SFG連接RMFG,Backward中RIPS連接RV1,Lateral中LIPS連接RIPS的連接強度得到顯著增加,還抑制了一些我們不太需要用到的腦區連接,如RMFG連接SFG。
摘要(英) In our daily lives, working memory (WM) has played a very important role during working or learning. So many studies have focused on WM capability assessment and training of WM. For now, researchers generally use the intelligence tests to assess the WM capacity. But, can the behavioral data (Intelligence tests etc.) completely assess the neurophysiological change? Does the working memory training really change our brains? To answer the questions, we first correlated the performance of the N-back task to its ERPs (P300 and N200) to find their relation and then the amplitude and latency of N200 to assess the effectiveness of working memory training. In addition, DCM was employed to explore the mechanisms underlying the n-back task before and after WM training.
This study recruited thirty Central University student subjects with normal vision and no history of central nervous system disorders, and they are right handedness. Training group, control group (1) and control group (2) respectively have 10 persons. Subjects in the training group were asked to perform spatial span in three weeks, five days a week and thirty minutes a day. Subjects in the control group (1) need to complete motion control game, it is independent of memory, with the experimental group trained the same frequency. While the control group (2) does not require any training accepted. And then by the three documents as the basis, we have established three different models, to find the most suitable for the study of the neural network structure. Finally, the best structure to find out which areas of the network connection appears significant change before and after the training.
There is no significant relation between ERPs and the performance of the n-back task. Memory training of web puzzle game, we find three electrode sites (C4, T8, P8) appear the value of N2 amplitudes increased in the experimental group are significantly higher than control group, This shows that memory training has its positive effects, it can indeed reduce the impact of memory load on the brain, and its effects can be maintained for at least a week. The fish sticks hastily trained cannot produce a significant impact on the working memory.
Memory training not only makes the connection strength to get a significant increase in some brain regions , for example LIPS connects SFG and SFG connects RMFG in forward, RIPS connects RV1 in backward, LIPS connects RIPS in lateral, also inhibits some we do not need to use the brain area connection, such as RMFG connection SFG.
關鍵字(中) ★ 工作記憶
★ 事件相關電位
★ N200
★ 訓練
★ DCM
關鍵字(英) ★ working memory
★ Event-related potentials(ERP)
★ N200
★ training
★ DCM
論文目次 摘要 I
Abstract III
目錄 V
圖目錄 VII
表目录 IX
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的 3
1-3 論文架構 4
第二章 文獻回顧 5
2-1 工作記憶 5
2-1-1 工作記憶的理論模型 6
2-1-2工作記憶訓練研究 9
2-2 事件相關電位 13
2-3 N2 16
2-4動態因果模型 19
2-4-1 大腦連通性 20
2-4-2 神經狀態方程 20
第三章 方法 23
3-1 實驗設計 23
3-2 實驗器材 24
3-3 訓練任務 25
3-4 實驗內容——N-back 28
3-5 資料分析 30
3-6動態因果模型的模型架構 32
3-7動態因果模型的選擇 35
第四章 結果 37
4-1 ERP與正確率 37
4-2 訓練成效 43
4-3 動態因果模型的分析 57
第五章 討論 66
5-1 ERP與正確率 66
5-2 訓練成效 67
5-2-1 3-back的訓練成效 67
5-2-2 0, 1, 2-back訓練成效 70
5-2-3 工作記憶訓練的影響 71
5-3大腦網路模型 72
第六章 結論 74
第七章 未來展望 75
參考文獻 76
參考文獻 Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: The same or different constructs? Psychological Bulletin, 131, 30–60.
Baddeley A D. The episodic buffer : a new component of working memory [J].Trends in Cognitive Sciences , 2000 , 4(11) : 417~423.
Baddeley, A. D. (1992). Working memory. Science, 255, 556–559.
Baddeley, A. D. (2001). Is working memory still working? American Psychologist, 11, 851–864.
Barrouillet, P., Mignon, M., &Thevenot, C. (2008).Strategies in subtraction problem solving in children. Journal of Experimental Child Psychology, 99, 233–251.
Beydagi H, Ozesmi C, Yilmaz A, et al. The relation between event- related potential and working memory in healthy subjects[ J] . International Journal of Neuroscience, 2000, ( 105) : 77- 85.
Brem S, Lang-Dullenkopf A, Maurer U, Halder P, Bueher K, et al. (2005) Neurophysiological signs of rapidly emerging visual expertise for symbolstrings. NeuroReport 16:45–48.
Buschkuehl, Martin, Susanne M. Jaeggi, and John Jonides. "Neuronal effects following working memory training." Developmental Cognitive Neuroscience 2 (2012): S167-S179.
Camos, V. (2008). Low working memory capacity impedes both efficiency and learning of number transcoding in children. Journal of Experimental Child Psychology, 99, 37–57.
Carmel D, Bentin S (2002) Domain specificity versus expertise: factors influencing distinct processing of faces. Cognition 83:1–29.
Collette, F., & Van der Linden, M. (2002). Brain imaging of the central executive component of working memory. Neuroscience and Biobehavioral Reviews, 26, 105–125.
Cowan N. The magical number 4 in short term memory : A reconsideration of mental storage capacity [J]. Be-havioral and Brain Sciences ,2001 , 24 : 87 - 185.
Dahlin, E., Neely, A. S., Larsson, A., Bäckman, L. & Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. Science, 320, 1510–1512.
Duncan, C. C., Barry, R. J., Connolly, J. F., Fischer, Michie, P. T., Näätänen, … Van Petten, C. (2009). Event-related potentials in clinical research: Guidelines for
eliciting, recording, and quantifying mismatch negativity, P300, N400. Clinical Neurophysiology, 120 (11), 1883–1908. doi:10.1016/j.clinph. 2009.07.045
Eason, R. et al. (1969) Effects of attention and arousal on visually evoked cortical potentials and reaction time in man. Physiol. Behav. 4, 283–289
Gevins A, Smith ME. Neurophysiological measures of workingmemory and individual differences in cognitive ability andcognitivestyle[ J] . Cerebral Cortex, 2000, ( 10) : 829- 839.
Harrison, Tyler L., et al. "Working memory training may increase working memory capacity but not fluid intelligence." Psychological Science (2013): 0956797613492984.
Itier RJ, Taylor MJ (2004) N170 or N1? Spatiotemporal differences between object and face processing using ERPs.Cereb Cortex 14:132–142.
Jaeggi, S. M., Buschkuehl, M., Jonides, J., &Perrig, W. J. (2008).Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6829–6833.
Kane, M. J., & Engle, R W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9, 637–671.
Klingberg, Torkel, Hans Forssberg, and Helena Westerberg. "Training of working memory in children with ADHD." Journal of clinical and experimental neuropsychology 24.6 (2002): 781-791.
Lee, Y. S., Lu, M. J., &Ko, H. P. (2007). Effects of skill training on working memory capacity. Learning and Instruction, 17, 336–344.
Luck, S. J., Woodman, G. F., & Vogel, E. K. (2000). Event -related potentrel studies of attention. Trends in Cognitive Sciences, 4(11), 432–440. doi:10.1016/S1364-6613(00)01545-X
Marina IV (2008) Event-related potentials during processing of semantically different words. J psych 69:276–316.
Maurer U, Brandeis D, McCandliss B (2005a) Fast visual specialization for reading in English revealed by the topography of the N170 ERP response. Behav Brain Funct 1:1–13.
Maurer U, Brem S, Bucher K, Brandeis D (2005b) Emerging neurophysiological specialization for letter strings. J CognNeurosci 17:1532–1552.
McEvoy LK, Pellouchoud E, Smith ME (2001) Neurophysiological signals of working memory in normal aging. Cog Brain Res 11:363–376.
McEvoy LK, Pellouchoud E, Smith ME (2001) Neurophysiological signals of working memory in normal aging. Cog Brain Res 11:363–376.
McNab, F., Varrone, A., Farde, L., Jucaite, A., Bystritsky, P., Forssberg, H., &Klingberg, T. (2009). Changes in cortical Dopamine D1 receptor binding associated with cognitive training. Science, 323, 800–802.
Miller, George A. "The magical number seven, plus or minus two: some limits on our capacity for processing information." Psychological review 63.2 (1956): 81.
Moody, D E. (2009). Can intelligence be increased by training on a task of working memory? Intelligence, 7, 327–328.
M.-X. Huang, R. R. Lee, G. A. Miller, R. J. Thoma, F. M. Hanlon, K. M. Paulson, K. Martin, D. L. Harrington, M. P. Weisend, J. C. Edgar, and J. M. Canive, “A parietal-frontal network studied by somatosensory oddball MEG responses, and its cross-modal consistency,” Neuroimage, vol. 28, no. 1, pp. 99–114, Oct. 2005.
Na¨a¨ ta¨nen, R., & Gaillard, A. W. K. (1983). The orienting reflex and the N2 deflection of the event related potential (ERP). In A.W. K. Gaillard & W. Ritter (Eds.), Tutorials in event related potential research: Endogenous components (10th ed). Amsterdam: North Holland.
Na¨a¨ ta¨nen, R., &Picton, T. W. (1986). N2 and automatic versus controlled processes. Electroencephalography & Clinical Neurophysiology, 38(Suppl.), 169–186.
Naumann, J., Richter, T., Christmann, U., &Groeben, N. (2008). Working memory capacity and reading skill moderate the effectiveness of strategy training in learning from hypertext. Learning and Individual Differences, 18, 197–213.
Oberauer , K. Access to information in working memory : Exploring the focus of attention [J]. Journal of Experi-mental Psychology,Learning ,Memory , and Cognition. 2002 , 28 : 411-421.
Olesen, P., Westerberg, H., &Klingberg, T. (2004).Increased prefrontal and parietal brain activity after training of working memory. Nature Neuroscience,7, 75–79.
Ritter, W., Simson, R., Vaughan, H. G. Jr, & Friedman, D. (1979). A brain event related to the making of a sensory discrimination. Science, 203, 1358–1361.
Ritter, W., Simson, R., Vaughan, H. G. Jr, &Macht, M. (1982).Manipulation of event-related potential manifestations of information processing stages. Science, 218, 909–911.
Rousselet GA, Pernet CR, Bennett PJ, Sekuler AB (2008) Parametric study of EEG sensitivity to phase noise during face processing. Neuroscience, 9:98–106.
Schacter, Daniel. (2009, 2011). Psychology Second Edition. United States of America: Worth Publishers. p. 227. ISBN 978-1-4292-3719-2.
Schneiders, J. A., Opitz, B., Krick, C. M., & Mecklinger, A. (2011). Separating intra-modal and across-modal training effects in visual working memory: an fMRI investigation. Cerebral Cortex, bhr037.
Squires, K. C., Wickens, C., Squires, N. K., &Donchin, E. (1976).The effect of stimulus sequence on the waveform of the cortical eventrelated potential. Science, 193, 1142–1146.
Squires,K. C., Petuchowsky, S., Wickens, C.,&Donchin, E. (1977). The effects of stimulus sequence on even related potentials: A comparison of visual and auditory sequences. Perception & Psychophysics, 22, 31–40.
Sternberg, R. J. (2008). Increasing fluid intelligence is possible after all. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6791–6792.
Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965).Evoked-Potential Correlates of Stimulus Uncertainty. Science, 150 (3700), 1187–1188. doi:10.1126/science.150.3700.1187
S. Crottaz-Herbette and V. Menon, “Where and When the Anterior Cingulate Cortex Modulates Attentional Response: Combined fMRI and ERP Evidence,” Journal of Cognitive Neuroscience, vol. 18, no. 5, pp. 766–780, 2006.
Turley-Ames, K. J., & Whitfield, M. M. (2003). Strategy training and working memory task performance. Journal of Memory and Language, 49, 446–468.
Weng-Tink , Chooi; Thompson, Lee A. (2012). "Working memory training does not improve intelligence in healthy young adults". Intelligence 40 (6): 531–542.
Westerberg, H., &Klingberg, T. (2007).Changes in cortical activity after training of working memory—a single-subject analysis. Physiology & Behavior, 92, 186–192.
Wright M J, Luciano M, Hansell N, et al. Genetic sources of covariation among P3( 00) and online performance vari2 ables in a delayed response working memory task[ J] . Biological Psychology, 2002, ( 61) : 183- 202.
Zhao X, Wang YX, Liu DW, Zhou RL (2011) Effect of updating training on fluid intelligence in children. Chin Sci Bull 21:2202–2205.
Zhao, X., Zhou, R., & Fu, L. (2013). Working Memory Updating Function Training Influenced Brain Activity. PloS One, 8(8), e71063.
魯忠義;杜建政;劉學華.工作記憶模型的第四個組成部分——情景緩衝器.心理科學(2008): 239-241.
指導教授 陳純娟(Chun-Chuan Chen) 審核日期 2016-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明