參考文獻 |
[1]. S. E. Miller, “Integrated Optics : an introduction, ” Bell. Syst. Tech. J., 48, p2059-2069 (1969)
[2]. A. K. Srivastava, et. al., “1 Tb/s transmission of 100WDM 10Gb/s channels over 400km of TrueWave fiber,” OFC’98, PD10.
[3]. G. E. Town, K. Sugden, J. William, I. Bennion, and S. Poolee, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett., 7, p78 (1995).
[4]. Ishida, H. Takahashi, and Y. Inoue, “Digitally tunable optical filters using arrayed-waveguide grating (AWG) multiplexers and optical switches,” J. Lightwave Technol., 15, p321 (1997).
[5]. P. H. Lissberger , A. K. Roy and D. J. McCartney, “Narrowband position-tuned multiplayer interference filter for use in single-mode-fibre systems,” Electron. Lett., 21, p798 (1985).
[6]. M. Kuznetsov, Cascaded coupler “Mach-Zehnder channel dropping filters for wavelength-division-multiplexed optical systems,” J. Lightwave Technol., 12, p226 (1994).
[7]. J. Stone and L. W. Stulz, “Pigtailed high-finesse tunable fiber Fabry-Perot interferometers with large, medium and small free spectral ranges,” Electron. Lett., 23, p781 (1987).
[8]. Y. Ohman, “On some new birefringent filter for solar research,” Ark. Astron., 2, p165 (1958).
[9]. J. W. Evans, “The Šolc birefringent filter,” J. Opt. Soc. Amer., 48, p142 (1958).
[10]. H. R. Morris, C. C. Hoyt, and P. J. Treado, “Imaging spectrometers for fluorescent and Raman microscopy acousto-optic and liquid crystal tunable filters,” Appl. Spectro., 48, p857-866 (1994).
[11]. R. C. Alferness, “Efficient waveguide electro-optic TE TM mode converter/wavelength filter,” Appl. Phys. Lett., 36, p513-515 (1980).
[12]. R. C. Alferness and L. L. Buhl, “Electro-optic waveguide TE TM mode converter with low drive voltage,” Opt. Lett., 5, p473-475 (1980).
[13]. X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett., 28, p2115-2117 (2003)
[14]. A. Yariv and P. Yeh, “Optical Waves in Crystal: propagation and control of laser radiation,” John Wiley & Sons, New York (1984).
[15]. A. Armstrong, N. Bloemergen, J. Ducuing, and P. S. Pershan, “Interactions between light wave in nonlinear dielectrics, “Phys. Rev., 127, p1919 (1962)
[16]. N. A. Sanford, J. M. Connors, and W. A. Dyers, “Simplified z-propagating DC bias stable TE-TM mode converter fabricatedin y-cut Lithium Niobate,” J. Lightwave Technol., 6, p898-902 (1988)
[17]. D. Marcuse, “Optimal electrode design for integated optics modulators,” IEEE J. Quantum Electronics, 18, p393-398 (1982)
[18]. C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, “Fabrication of Magnesium-Oxide-Induced Lithium outdiffusion waveguides,” IEEE Photon. Technol. Lett., 4, p872-875 (1992)
[19]. R. V. Schmidt and I. P. Kaminow, “Metal diffused optical waveguides in LiNbO3,” Appl. Phys. Lett., 25, p458-460 (1974)
[20]. T. Nozawa, K. Noguchi, H. Miyazawa, and K. Kawano, “Water vapor effects on optical characteristics in Ti:LiNbO3 channel waveguides,” Appl. Opt., 30, p1085-1089 (1991)
[21]. J. Noda, N. Uchida, S. Saito, T. Saku, and M. Minakada, “Electro-optic amplitude modulation using three-dimensional LiNbO3 waveguide fabricated by TiO2 diffusion,” Appl. Phys. Lett., 27, p19-21 (1975)
[22]. J. L. Jackel, V. Ramaswamy, and S. P. Lyman, “Elimination of out-diffused surface guiding in titanium-diffused LiNbO3,” Appl. Phys. Lett. 38, p509-511 (1981)
[23]. B. Chen and A. C. Pastor, “Elimination of Li2O out-diffusion waveguide in LiNbO3 and LiTaO3,” Appl. Phys. Lett., 30, p570-571 (1977)
[24]. W. K. Burns, C. H. Bulmer, and E. J. West, “Application of Li2O compensation techniques to Ti-diffused LiNbO3 planar and channel waveguides,” Appl. Phys. Lett., 33, p70-72 (1978)
[25]. T. R. Ranganath and S. Wang, “Suppression of Li2O out-diffusion from Ti-diffused LiNbO3 optical waveguides,” Appl. Phys. Lett., 30, p376-379 (1977)
[26]. S. Miyazawa, R. Guglielmi, and A. Carenco, “A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguide,” Appl. Phys. Lett., 31, p742-744 (1977)
[27]. R. J. Esdaile, “Closed-tube control of out-diffusion during fabrication of optical waveguides in LiNbO3,” Appl. Phys. Lett., 33, p733-734 (1978)
[28]. F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies if Ti:LiNbO3 optical waveguides,” J. Appl. Phys., 78, p5345-5350 (1995)
[29]. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol., 5, p700-708 (1987)
[30]. E. Strake, G. P. Bava, and I. Monstrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar Finite-Element Method,” J. Lightwave Technol., 6, p1126-1135 (1988)
[31]. 陳柏超,『應用於準相位匹配二次諧波產生藍光元件之質子交換波導設計與製作』,清華大學碩士論文,電機系光電組(2000)
[32]. K. S. Chiang, “Construction of refractive index profiles of planar dielectric waveguides from distribution of effective indexed,” J. Lightwave Technol., LT-3, 2, p385-391 (1985)
[33]. Y. Ishigame , T. Suhara , and H. Nishihara, “LiNbO3 waveguide second-harmonic-generation device phase matched with a fan-out domain-inverted grating,” Opt. Lett., 16, p375-377 (1991)
[34]. J. Webjorn, F. Laurell, G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a Lithium Niobate channel waveguide,” IEEE Photon Techonol. Lett., 1, p316-318 (1989)
[35]. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic-generation,” Appl. Phys. Lett., 62, p435-436 (1993)
[36]. Alan C. G. Nutt, Venkatraman Gopalan, and Mool C. Gupta, “Domain inversion in LiNbO3 using direct electron-beam writing,” Appl. Phys. Lett., 60, p2828-2830 (1992)
[37]. G. Schreiber, H. Suche, Y. L. Lee, W. Grundkotter, V. Quiring, R. Ricken, W. Sohler, “Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed an cw pumping,” Appl. Phys. B, 73, p501-504 (2001)
[38]. L. H. Peng, Y. J. Shih, and Y. C. Zhang, “Restrictive domain motion in polarization switching of Lithium Niobate,” Appl. Phys. Lett., 81, p1666-1668 (2002)
[39]. M. Fujimura, T. kodama, T. Suhara, and H. Nishihara, “Quasi-phase-matched self-frequency-doubling waveguide laser in Nd:LiNbO3,” IEEE Photon Techonol. Lett., 12, p1513-1515 (2000)
[40]. M. N. Armenise, M De Sario, C. Canali, P. Franzosi, J.Singh, R. H. Hutchins, and R. M. De La Rue, “In-plane scattering in titanium-diffused LiNbO3 optical waveguides,” Appl. Phys. Lett., 45, p326-328 (1984)
[41]. M. De Sario, M. N. Armenise, C. Canali, A. Carnera, P. Mazzoldi, and G. Celotti, “TiO2, LiNb3O8, and (TixNb1-x)O2 compound kinetics during Ti:LiNbO3 waveguide fabrication in the presence of water vapors,” J. Appl. Phys., 57, p1482-1488 (1985)
[42]. M. Ahmad, K. Chelapathi, and Y. G. K. Patro, “Effect of water vapor in a y-cut lithium niobate waveguide,” Appl. Opt., 35, p1489-1491 (1996)
[43]. S. Forouhar, G. E. Betts, and W. S. C. Chang, “Effects of water vapor on modes in Ti-indiffused liNbO3 planar waveguides,” Appl. Phys. Lett., 45, p207-209 (1984)
[44]. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B, 36, p143-147 (1985)
[45]. R. C. Alferness, “Waveguide electrooptic modulator,” IEEE Trans. Microwave Theory Tech., MTT-30, p1121-1137 (1982)
[46]. F. Heismann, and R. C. Alferness, “Wavelength-tunable electrooptic polarization conversion in birefringent waveguides,” IEEE J. Quantum Electronics, QE-24, p83-93 (1988) |