博碩士論文 972406008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:3.139.83.145
姓名 卓文浩(Wen-Hao Cho)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 高溫熱處理對光學薄膜特性影響及應用
(Effect and Applications of High Temperature Heat Treatment on Optical Thin Films)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用高溫熱處理方式,研究高溫下材料交互擴散及孔隙擴
散及對薄膜材料的影響與改變,以及所造成的折射率變化作深入分析,
並依據擴散機制完成非均勻薄膜製作,其中包含Ta2O5/TiO2、
Al2O3/MgO、Al2O3/ZnO 等材料組合,三種材料組合在高溫熱處理下
的擴散現象各有不同,其中Ta2O5/TiO2 組合在800oC 下單純以材料濃
度梯度造成交互擴散現象, 可應用於漸變折射率膜層設計。
Al2O3/MgO 組合在800oC 下兩材料會進行交互擴散,並在介面生成二
次相MgAl2O4,同時在擴散速率較快的MgO 層產生微小孔洞,孔洞
生成降低MgO 膜層等效折射率,而Mg 原子擴散至Al2O3 膜層中形
成MgAl2O4 則提高原Al2O3 層折射率,使高低折射率差異由原本0.11
增大為0.14135,約增大28.5 %。利用此現象製做(Al2O3 MgO)8 Al2O3
多層膜經800oC、4 小時熱處理可得到(MgAl2O4 MgO+voids)8 MgAl2O4
之膜層結構,因熱處理後使得高低折射率材料位置互換,以及高低折
射率材料差異擴大,故可得到反射率約61%之反射濾光片,並與模擬
數值一致。Al2O3/ZnO 材料組合在800oC 下ZnO 與Al2O3 介面生成二
次相ZnAl2O4,孔洞大量生成於ZnO 層,降低ZnO 折射率,完全反
應後ZnO 層中孔隙率達58.6 %,折射率降為1.357。
摘要(英) In this study, the influence of solid state diffusion on refractive index of thin films had been studied using thermal annealing method at high temperature. Base on solid state diffusion mechanism, we prepared three different material pairs, including Ta2O5/TiO2, Al2O3/MgO, Al2O3/ZnO. Each of these material pairs represented a different diffusion situation. Only interdiffusion phenomenon appeared at the interface of Ta2O5 and TiO2 at annealing temperature of 800oC and made the graded refractive index layer. According to the concept, we could design the rugate filter employed the suitable material pair. In Al2O3/MgO case, MgAl2O4 spinel layer growth between MgO and Al2O3 during annealing process of 800oC. Besides, some voids developed in the MgO layer and the apparent refractive index of MgO layer was decreased. The voids were caused by the faster diffusion rate of MgO than Al2O3 and increased the refractive index difference of 28.5% between high and low refractive index materials in the multilayer. Base on the reaction mechanism of Al2O3 and MgO, (Al2O3 MgO)8 Al2O3 multilayer would become (MgAl2O4 MgO+voids)8 MgAl2O4 after annealing process of 800oC for 4 hours. After annealing process, the positions of high and low refractive index materials exchanged, and the effective refractive indices of MgO layers were decreased due to the presence of voids. Beside, the refractive index difference of the multilayer was increased by 28%. Therefore, the reflective filter with 61% reflection at 300nm was obtained. The same as Al2O3/MgO pair, ZnAl2O4 spinel layer growth between ZnO and Al2O3 during annealing process of 800oC. A lot of voids developed in ZnO layer and caused much decrease in refractive index. The porosity of ZnO layer after annealing process achieves 58.6 % and the refractive index decreased to 1.357 at 550 nm wavelength.
關鍵字(中) ★ 多孔性光學濾光片
★ 尖晶石
★ 薄膜擴散
關鍵字(英) ★ Porous optical filter
★ Spinel
★ Diffusion in thin film
論文目次 目  錄
摘要.............................................................................................................I
致謝...........................................................................................................II
目錄...........................................................................................................V
圖目錄.....................................................................................................VII
表目錄...................................................................................................XIII
第一章 前言............................................................................................1
1.1 研究背景......................................................................................1
1.2 研究動機與研究架構..................................................................2
1.3 文獻回顧......................................................................................3
第二章 基本理論....................................................................................6
2.1 固態擴散......................................................................................6
2.1.1 菲克第一定律......................................................................9
2.1.2 菲克第二定律....................................................................12
2.2 Kirkendall effect.........................................................................17
2.3 尖晶石群....................................................................................20
2.4 等效介質近似理論....................................................................23
第三章 研究方法..................................................................................25
3.1 實驗方法....................................................................................25
3.2 實驗設備....................................................................................26
3.2.1 電子束蒸鍍系統................................................................26
3.2.2 高溫濕氧爐管....................................................................27
3.3 量測儀器....................................................................................28
3.3.1 UV/NIR分光光譜儀.........................................................28
3.3.2 掃描式電子顯微鏡............................................................28
3.3.3 穿透式電子顯微鏡............................................................30
3.3.4 能量散射光譜儀................................................................32
3.3.5 X射線繞射分析儀............................................................33
3.3.6 X光光電子能譜儀............................................................35
3.3.7 橢偏儀................................................................................35
第四章 結果與討論..............................................................................40
4.1 Ta2O5/TiO2..................................................................................42
4.1.1 微結構與結晶性分析........................................................42
4.1.2 非均勻性分析....................................................................46
4.1.3 擴散係數計算....................................................................50
4.2 Al2O3/MgO.................................................................................52
4.2.1 微結構與結晶性分析........................................................52
4.2.2 非均勻性分析....................................................................55
4.2.3 多層膜製作........................................................................58
4.2.4 擴散係數計算....................................................................60
4.3 Al2O3/ZnO..................................................................................65
4.3.1 微結構與結晶性分析........................................................65
4.3.2 非均勻性分析....................................................................67
4.3.3 多層膜製作........................................................................69
4.3.4 擴散係數計算....................................................................70
第五章 結論..........................................................................................75
參考文獻..................................................................................................77

圖目錄
圖2.1 (a) 兩種不同組成比例之AB固溶體擴散方向示意圖。(b)A-B合金之自由能曲線圖。..............................................................................7
圖2.2 (a) 具有互溶間隙之A-B合金擴散方向示意圖。(b)A-B合金之自由能曲線圖。..........................................................................................7
圖2.3間隙擴散示意圖。............................................................................8
圖2.4空位擴散示意圖。............................................................................8
圖2.5 間隙原子移動說明圖。...................................................................9
圖2.6 菲克第二定律推導說明圖。.........................................................12
圖2.7 薄膜材料B鍍製於A材料結構示意圖。..................................13
圖2.8溶質總量固定,於不同熱處理時間其濃度變化曲線示意圖。...14
圖2.9摻雜溶質表面濃度固定,於不同熱處理時間其濃度變化曲線示意圖。.......................................................................................................15
圖2.10 計算摻雜溶質表面濃度固定之積分說明圖。..........................15
圖2.11 Kirkendall Effect 實驗示意圖。..................................................18
圖2.12 此為多面體相連接所呈現之尖晶石結構圖若以尖晶石群中的尖晶石(MgAl2O4),Mg2+(A)佔據綠色四面體孔隙的孔隙中,Al3+(B)則是位於八面體孔隙中。........................................................................20
圖2.13 配位數為4的四面體孔隙(tetrahedral site)...........................21
圖2.14 與配位數為6的八面體孔隙(octahedral site)......................21
圖2.15 Drude model 示意圖; E :外加電場; εa ,εb :物質的介電常數。..23
圖2.16 Lorentz-Lorenz EMA之材料感應電偶極示意圖。...................24
圖3.1 離子源輔助電子束蒸鍍示意圖。...............................................27
圖3.2 HITACHI U-3900 UV-VIS分光光譜儀光路圖。........................28
圖3.3 掃瞄式電子顯微鏡架構示意圖。...............................................29
圖3.4 入射電子在試片裡經彈性和非彈性碰撞後所放出之電子和電磁波。........................................................................................................30
圖3.5 穿透式電子顯微鏡基本構造圖。................................................31
圖3.6 (a)特性x-ray原理。(b) 特性 X-ray 之命名方式。.................33
圖3.7 X-ray繞射現象。..........................................................................34
圖3.8 Spectroscopic Ellipsometry 架構圖。...........................................36
圖3.9 橢圓參數量測示意圖。...............................................................36
圖4.1 Ta2O5-TiO2-Ta2O5三層膜熱處理前及進行600oC、700oC、800oC熱處理4小時後之穿透光譜。................................................................41
圖4.2 Al2O3-MgO-Al2O3三層膜熱處理前及進行600oC、700oC、800oC熱處理4小時後之穿透光譜。.................................................................41
圖4.3 Al2O3-ZnO-Al2O3-ZnO-Al2O3五層膜熱處理前及進行700oC 4小時、800oC 4小時及6小時熱處理後之穿透光譜。.............................42
圖4.4 室溫離子輔助電子束蒸鍍Ta2O5-TiO2-Ta2O5多層膜SEM剖面圖。............................................................................................................43
圖4.5 經800oC、4小時熱處理後之Ta2O5-TiO2-Ta2O5多層膜SEM剖面圖。.......................................................................................................44
圖4.6 TiO2單層膜經800oC、4小時熱處理後之SEM剖面圖。.......44
圖4.7 Ta2O5單層膜經800oC、4小時熱處理後之SEM剖面圖。......45
圖4.8 Ta2O5-TiO2-Ta2O5樣品800oC、4小時 (a) 退火前及 (b) 退火後以及 (c) TiO2、 (d) Ta2O5單層膜800oC、4小時退火後之1度入射XRD圖。............................................................................................................46
圖4.9 Ta2O5-TiO2-Ta2O5熱處理前後之穿透光譜圖。...........................47
圖4.10 Ta2O5-TiO2-Ta2O5樣品熱處理後之橢偏儀擬合模型。.............48
圖4.11 Ta2O5-TiO2-Ta2O5樣品熱處理後之橢偏儀參數擬合曲線。.....48
圖4.12 Ta2O5-TiO2-Ta2O5樣品熱處理後TiO2濃度分佈。...................49
圖4.13 Ta2O5-TiO2-Ta2O5樣品熱處理後之非均勻薄膜折射率變化情形。............................................................................................................49
圖4.14 以橢偏儀擬合之薄膜非均勻等效折射率模擬Ta2O5-TiO2-Ta2O5樣品熱處理後之穿透光譜。.......................................50
圖4.15 Ta2O5-TiO2-Ta2O5樣品熱處理後之XPS成份縱深分佈圖。....50
圖4.16 摻雜物質於物體中總量一定時,因擴散作用其濃度分佈於不同時間之分佈曲線。...............................................................................51
圖4.17經800oC、4小時熱處理後之Al2O3-MgO-Al2O3多層膜SEM剖面圖。........................................................................................................53
圖4.18經800oC、4小時熱處理後之Al2O3-MgO-Al2O3多層膜TEM圖。............................................................................................................53
圖4.19 MgO、Al2O3經800oC、4小時熱處理後及Al2O3-MgO-Al2O3經相同條件熱處理前後之1度入射低掠角XRD圖。............................54
圖4.20 Al2O3-MgO-Al2O3樣品熱處理後之橢偏儀擬合模型。...........55
圖4.21 Al2O3-MgO-Al2O3樣品熱處理後之橢偏儀參數擬合曲線。....56
圖4.22 Al2O3-MgO-Al2O3樣品熱處理後之非均勻薄膜折射率變化情形。............................................................................................................56
圖4.23以橢偏儀擬合之非均勻折射率模擬Al2O3-MgO-Al2O3樣品熱處理後之穿透光譜。................................................................................57
圖4.24 (a) Al2O3-MgO-Al2O3樣品熱處理後之TEM EDS line scan分佈。(b)進行TEM EDS line scan 位置。.........................................................57
圖4.25 (Al2O3-MgO)8 Al2O3多層膜經800oC、4小時熱處理(a) SEM剖面圖及 (b) 局部放大圖。.......................................................................58
圖4.26 (Al2O3-MgO)8 Al2O3多層膜800oC、4小時熱處理前、後以及模擬之穿透光譜。...................................................................................59
圖4.27經800oC、1小時熱處理後之MgO-Al2O3雙層膜SEM剖面圖。...........................................................................................................60
圖4.28 MgO-Al2O3樣品熱處理1小時之橢偏儀擬合模型。..............61
圖4.29 MgO-Al2O3樣品熱處理後之橢偏儀參數擬合曲線。..............62
圖4.30 MgO-Al2O3樣品熱處理後之非均勻薄膜折射率變化情形。...62
圖4.31以橢偏儀擬合之非均勻折射率模擬MgO-Al2O3樣品熱處理1小時及實際量測之穿透率光譜。............................................................63
圖4.32 MgO-Al2O3雙層膜熱處理後MgO於樣品中濃度分佈示意圖。............................................................................................................64
圖4.33摻雜表面濃度不變之擴散濃度變化曲線。...............................64
圖4.34基板溫度300oC以離子輔助電子束蒸鍍Al2O3-ZnO-Al2O3多層膜SEM剖面圖。......................................................................................65
圖4.35 Al2O3-ZnO-Al2O3多層膜經800oC、4小時熱處理後SEM剖面圖。............................................................................................................66
圖4.36 Al2O3-ZnO-Al2O3樣品經800oC、4小時熱處理後之XRD圖。............................................................................................................66
圖4.37 (a) Al2O3-ZnO-Al2O3樣品熱處理後之TEM EDS line scan分佈。(b)進行TEM EDS line scan 於樣品上對應之位置。............................67
圖4.38 Al2O3-ZnO-Al2O3樣品熱處理後之橢偏儀擬合模型。.............68
圖4.39 Al2O3-ZnO-Al2O3樣品熱處理後之橢偏儀參數擬合曲線。.....68
圖4.40 Al2O3-ZnO-Al2O3樣品熱處理後中間層ZnO/void之色散曲線。............................................................................................................69
圖4.41 Al2O3-ZnO-Al2O3-ZnO-Al2O3樣品經800oC、4小時熱處理後SEM剖面圖。...........................................................................................70
圖4.42經800oC、1小時熱處理後之MgO-Al2O3雙層膜SEM剖面圖。………………………………………………………………………71
圖4.43 ZnO-Al2O3樣品熱處理1小時之橢偏儀擬合模型。…………72
圖4.44 ZnO-Al2O3樣品熱處理後之橢偏儀參數擬合曲線。…………72
圖4.45 ZnO-Al2O3樣品熱處理後之非均勻薄膜折射率變化情形 (參考波長為550 nm)。………………………………………………………..73
圖4.46以橢偏儀擬合之非均勻折射率模擬ZnO-Al2O3樣品(Si substrate)熱處理1小時及實際量測之反射光譜。……………………74


表目錄
表3.1 各材料製程參數表。....................................................................25
表4.1 離子輔助電子束蒸鍍Ta2O5-TiO2-Ta2O5多層膜厚度。............43
表4.2 離子輔助電子束蒸鍍Al2O3-MgO-Al2O3多層膜厚度。...........52
表4.3 離子輔助電子束蒸鍍MgO-Al2O3雙層膜厚度。......................60
表4.4 離子輔助電子束蒸鍍Al2O3-ZnO-Al2O3多層膜厚度。.............65
表4.5 離子輔助電子束蒸鍍ZnO-Al2O3雙層膜厚度。
參考文獻 參考文獻
[1]. 李正中, 薄膜光學與鍍膜技術. (藝軒圖書出版社, ed. 第五版).
[2]. C. C. Lee, C. W. Chu, "High Power CO2 Laser Mirror: a design." Appl. Opt. 26, 2544-2548 (1987).
[3]. C.-C. Lee, H.-L. Chen, J.-C. Hsu, C.-L. Tien, "Interference coatings based on synthesized silicon nitride." Appl. Opt. 38, 2078-2082 (1999).
[4]. K. Streubel, S. Rapp, J. André, N. Chitica, "1.26 μm vertical cavity laser with two InP/air-gap reflectors." Electron. Lett 32, 1369-1370 (1996).
[5]. D. Nesic, A. Nesic, "Bandstop microstrip PBG filter with sinusoidal variation of the characteristic impedance and without etching in the ground plane." Microw. Opt. Technol. Lett. 29, 418-420 (2001).
[6]. J. Minowa, Y. Fujii, "Subnanometer bandwidth interference filter for optical fiber communication systems." Appl. Opt. 27, 1385-1386 (1988).
[7]. H. Takashashi, "Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition." SPIE 2253, 1343-1353 (1994).
[8]. H. Takashashi, "Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition." Appl. Opt. 34, 667-675 (1995).
[9]. A. Zoller, R. Gotzelmann, K. Matl, D. Cushing, "Temperature-stable bandpass filters deposited with plasma ion-assisted deposition." Appl. Opt. 35, 5609-5612 (1996).
[10]. Y.-F. HUANG et al., "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures." Nat. Nanotechnol. 2, 770-774 (2007).
[11]. S. Chhajed, M. F. Schubert, J. K. Kim, E. F. Schubert, "Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics." Appl. Phys. Lett. 93, 251108 (2008).
[12]. C. C. Lee, H. C. Chen, C. C. Jaing, "Effect of thermal annealing on the optical properties and residual stress of TiO2 films produced by ion-assisted deposition." Appl. Opt. 44, 2996-3000 (2005).
[13]. C.-C. Lee, D. T. Wei, J.-C. Hsu, C.-H. Shen, "Influence of Oxygen on Some Oxide Films by Ion Beam Sputter Deposition." Thin Solid Films 290, 88-93 (1996).
[14]. J.-C. Hsu, C.-C. Lee, "Single- and dual-ion-beam sputter deposition of titanium oxide films." Appl. Opt. 37, 1171-1176 (1998).
[15]. B. Agnarsson et al., "Rutile TiO2 thin films grown by reactive high power impulse magnetron sputtering." Thin Solid Films 545, 445-450 (2013).
[16]. K. Sarakinos, J. Alami, M. Wuttig, "Process characteristics and film properties upon growth of TiOx films by high power pulsed magnetron sputtering." J. Phys. D: Appl. Phys. 40, 2108-2114 (2007).
[17]. S.-H. Woo, S.-H. Kim, C. K. Hwangbo, "Optical and Structural Properties of TiO2 and MgF2 Thin Films by Plasma Ion-Assisted Deposition." J. Korean Phys. Soc. 45, 99-107 (2004).
[18]. R. C. Jayasinghe, A. G. U. Perera, H. Zhu, Y. Zhao, "Optical properties of nanostructured TiO2 thin films and their application as antireflection coatings on infrared detectors." Opt. Lett. 37, 4302-4304 (2012).
[19]. X.-Y. Guan, J. W. Leem, J. S. Yu, "Nanoporous TiO2-Based Distributed Bragg Reflectors for Near-Infrared Wavelength Applications." J. Nanosci. Nanotechnol. 15, 9650-9655 (2015).
[20]. S. Chhajed et al., "Nanostructured Multilayer Tailored-Refractive-Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics." Appl. Phys. Express 4, 052503 (2011).
[21]. J.-Q. Xi et al., "Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods." Opt. Lett. 31, 601-603 (2006).
[22]. F. J. Garcia-Garcia et al., "Low refractive index SiOF thin films prepared by reactive magnetron sputtering." Thin Solid Films 542, 332-337 (2013).
[23]. G.-R. Lin, Y.-C. Chang, E.-S. Liu, H.-C. Kuo, H.-S. Lin, "Low refractive index Si nanopillars on Si substrate." Applied Physics Letters 90, 181923 (2007).
[24]. C. Li, N. S. Colella, J. J. Watkins, "Low-Temperature Fabrication of Mesoporous Titanium Dioxide Thin Films with Tunable Refractive Indices for One-Dimensional Photonic Crystals and Sensors on Rigid and Flexible Substrates." ACS Appl. Mater. Interfaces 7, 13180-13188 (2015).
[25]. J. R. Castro Smirnov, Mauricio E. Calvo, H. Míguez, "Selective UV Reflecting Mirrors Based on Nanoparticle Multilayers." Adv. Funct. Mater. 23, 2805-2811 (2013).
[26]. E. Redel, P. Mirtchev, C. Huai, S. Petrov, G. A. Ozin, "Nanoparticle Films and Photonic Crystal Multilayers from Colloidally Stable, Size-Controllable Zinc and Iron Oxide Nanoparticles." ACS Nano 5, 2861-2869 (2011).
[27]. E. Redel et al., "Electrochromic Bragg Mirror: ECBM." Adv. Mater. 24, OP265-OP269 (2012).
[28]. Y. Zhang et al., "A convenient sol–gel approach to the preparation of nano-porous silica coatings with very low refractive indices." Chem. Commun. 50, 13813-13816 (2014).
[29]. D. Konjhodzic, S. Schröter, F. Marlow, "Ultra-low refractive index mesoporous substrates for waveguide structures." Phys. Status Solidi A 201, 3676-3688 (2007).
[30]. C. W. Mason, "Structural Colors in Insects. II." J. Phys. Chem. 31, 321-354 (1927).
[31]. C. W. Mason, "Structural Colors in Insects. III." J. Phys. Chem. 31, 1856-1872 (1927).
[32]. A. C. Neville, S. Caveney, "Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystal." Biol. Rev. 44, 531-562 (1969).
[33]. H. Durrer, W. Villiger, "Schillerfarben von Euchroma gigantean (L.): (Coleoptera: Buprestidae): Elektronenmikroskopische Untersuchung der Elytra." Int. J. Insect Morphol. Embryol. 1, 233-240 (1972).
[34]. E. F. Schubert, J. K. Kim, J. Q. Xi, "Low-refractive-index materials: A new class of optical thin-film materials." physica status solidi (b) 244, 3002-3008 (2007).
[35]. Y. Kuo, "Etch mechanism in the low refractive index silicon nitride plasma‐enhanced chemical vapor deposition process." Appl. Phys. Lett. 63, 144-146 (1993).
[36]. J.-Q. XI et al., "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection." Nature Photon. 1, 176-179 (2008).
[37]. G. Wicht, R. Ferrini, S. Schüttel, L. Zuppiroli, "Nanoporous Films with Low Refractive Index for Large-Surface Broad-Band Anti-Reflection Coatings." Macromol. Mater. Eng. 295, 628-636 (2010).
[38]. Y. Du, L. E. Luna, W. S. Tan, M. F. Rubner, R. E. Cohen, "Hollow Silica Nanoparticles in UV−Visible Antireflection Coatings for Poly(methyl methacrylate) Substrates." ACS Nano 4, 4308-4316 (2010).
[39]. B. D. Hatton, K. Landskron, W. Whitnall, D. D. Perovic, G. A. Ozin, "Spin-Coated Periodic Mesoporous Organosilica Thin FilmsÐTowards a New Generation of Low-Dielectric-Constant Materials." Adv. Funct. Mater. 15, 823-829 (2005).
[40]. C. Shang et al., "Detailed microstructure analysis of as-deposited and etched porous ZnO films." Appl. Surf. Sci. 344, 242-248 (2015).
[41]. W. Greiner, L. Neise, H. Stöcker, Thermodynamics and statistical mechanics. (Springer-Verlag, 1995), pp. 101.
[42]. A. D. Smigelkas, E. O. Kirkendall, "Zinc diffusion in alpha brass." Trans. AIME 171, 130-134 (1947).
[43]. L. S. Darken, "Diffusion, mobility and their interrelation through free energy in binary metallic systems." Trans. Met. Soc. AIME 175, 184-201 (1948).
[44]. G. Glodán, C. Cserháti, I. Beszeda, D. L. Beke, "Production of hollow hemisphere shells by pure Kirkendall porosity formation in Au/Ag system." Appl. Phys. Lett. 97, 113109 (2010).
[45]. A. Bolk, "Kirkendall-effect in the gold-platinum system." Acta Metall. 6, 59-62 (1958).
[46]. A. Bolk, "Kirkendall effect and diffusion in the gold-platinum system—I: The Kirkendall effect." Acta Metall. 9, 632-642 (1961).
[47]. A. Bolk, "Kirkendall effect and diffusion in the gold-platinum system—II: The concentration penetration curves and the diffusion coefficients." Acta Metall. 9, 643-652 (1961).
[48]. M. O, G. Vakanas, N. Moelans, M. Kajihara, W. Zhang, "Formation of compounds and Kirkendall vacancy in the Cu–Sn system." Microelectron. Eng. 120, 133-137 (2014).
[49]. J.-M. Park, S.-H. Kim, M.-H. Jeong, Y.-B. Park, "Effect of Cu-Sn intermetallic compound reactions on the Kirkendall void growth characteristics in Cu/Sn/Cu microbumps." Jpn. J. Appl. Phys. 53, 05HA06 (2014).
[50]. H. Oikawa, A. Hosoi, "Interdiffusion in Cu-Sn solid solutions. confirmation of anomalously large kirkendall effect." Scripta Mater. 9, 823-828 (1975).
[51]. M. J. H. v. Dal, M. C. L. P. Pleumeekers, A. A. Kodentsov, F. J. J. v. Loo, "Diffusion studies and re-examination of the Kirkendall effect in the Au-Ni system." J. Alloys Compd. 309, 132-140 (2000).
[52]. P. Ratchev, S. Stoukatch, B. Swinnen, "Mechanical reliability of Au and Cu wire bonds to Al, Ni/Au and Ni/Pd/Au capped Cu bond pads." Microelectronics Reliability 46, 1315-1325 (2006).
[53]. L. G. Feinstein, J. B. Bindell, "The failure of aged Cu Au thin films by Kirkendall porosity." Thin Solid Films 62, 37-47 (1979).
[54]. G. Zhang, W. Wang, Q. Yu, X. Li, "Facile One-Pot Synthesis of PbSe and NiSe2 Hollow Spheres - Kirkendall-Effect-Induced Growth and Related Properties." Chem. Mater. 21, 969-974 (2009).
[55]. H. J. Fan, U. Gosele, M. Zacharias, "Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review." Small 3, 1660-1671 (2007).
[56]. F. Güder et al., "Improved optical properties of ZnO thin films by concurrently introduced interfacial voids during thermal annealing." Appl. Phys. Lett. 99, 023105 (2011).
[57]. Q. Peng et al., "Bi-directional Kirkendall Effect in Coaxial Microtube Nanolaminate Assemblies Fabricated by Atomic Layer Deposition." ACS Nano 3, 546-554 (2009).
[58]. Q. Li, R. M. Penner, "Photoconductive Cadmium Sulfide Hemicylindrical Shell Nanowire Ensembles." Nano Lett. 5, 1720-1725 (2005).
[59]. Y. Yin et al., "Formation of hollow nanocrystals through the nanoscale Kirkendall Effect." Science 304, 711-714 (2004).
[60]. W. A. Deer, R. A. Howie, J. Zussman, An Introduction to the Rock-forming Minerals. (ed. 2nd, 1992), pp. 558-569.
[61]. H. J. Fan, Y. Yang, M. Zacharias, "ZnO-based ternary compound nanotubes and nanowires." J. Mater. Chem. 19, 885-900 (2008).
[62]. H. S. C. O′Neill, W. A. Dollase, "Crystal structures and cation distributions in simple spinels from powder XRD structural refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the temperature dependence of the cation distribution in ZnAl2O4." Phys. Chem. Miner. 20, 541-555 (1994).
[63]. R. F. Cooley, J. S. Reed, "Equilibrium cation distribution in NiAl2O4, CuAl2O4, and ZnAl2O4." J. Am. Ceram. Soc. 55, 395-398 (1972).
[64]. D. Carta et al., "A Structural and Magnetic Investigation of the Inversion Degree in Ferrite Nanocrystals." J. Phys. Chem. C 113, 8606-8615 (2009).
[65]. C. Kittel, Introduction to solid state physics. (Wiley, Canada, 1996), pp. 379-390.
[66]. D. E. Aspnes, "Local-field effects and effective-medium theory: A microscopic perspective." Am. J. Phys. 50, 704-709 (1982).
[67]. J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, C.-H. Chen, "Mixed films of TiO2–SiO2 deposited by double electron-beam coevaporation." Appl. Opt. 35, 90-96 (1996).
[68]. L. Ward, The optical constants of bulk materials and films. (IOP publishing Ltd, England, 1998), pp. 236-262.
[69]. R. E. CARTER, "Mechanism of Solid-state Reaction Between Magnesium Oxide and Aluminum Oxide and Between Magnesium Oxide and Ferric Oxide." Journal of American Ceramic Society 44, 116-120 (1961).
[70]. C. N. R. Rao, J. Gopalakrishnan, NEW DIRECTIONS IN SOLID STATE CHEMISTRY. (Cambridge University Press, 1997), pp. 488-490.
[71]. E. B. WATSON, J. D. PRICE, "Kinetics of the reaction MgO + Al2O3 → MgAl2O4 and Al-Mg interdiffusion in spinel at 1200 to 2000°C and 1.0 to 4.0 GPa." Geochim. Cosmochim. Acta 66, 2123-2138 (2002).
指導教授 李正中(Cheng-Chung Lee) 審核日期 2016-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明