博碩士論文 93246003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.15.1.129
姓名 鄭雅云(Ya-Yun Cheng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以分子動力學與平行運算法模擬氬原子團撞擊金屬薄膜與奈米金屬多層膜之研究
(Molecular Dynamics Simulation of an Ar cluster impact the multilayered films)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 奈米金屬多層膜的超硬度特性使得其在工業上被廣泛地被應用於模仁、切具上當作是保護層,延長工具的使用壽命,而調製週期是影響其硬度表現一個非常重要的結構因素。在此研究中,本文使用分子動力學模擬一個氬原子團撞擊奈米金/鎳多層膜的表面,當滿足有效撞擊條件下,撞擊過後在多層膜表面會有一個凹洞產生,並且凹洞的深度隨著奈米金/鎳多層膜調製周期的改變會不同。調製週期的範圍為1.32 nm~5.26 nm,當調製週期由1.32 nm升至3.95 nm時,隨著調製週期的上升,金/鎳多層膜所表現出來的硬度升高。在調製週期為3.95 nm時硬度達最高,隨後隨著調製週期的增加,奈米金/鎳多層膜的硬度反而下降了。
在氬原子團撞擊薄膜表面的瞬間,在金屬多層膜內會有一脈衝波出現,脈衝波是由一塑形波(Plastic Wave)及一個彈性波(Elastic Wave)共同組成,塑形波會改變薄膜原子的位置使得薄膜在撞擊過後產生形變,而彈性波並不會改變原子的位置只會增加局部薄膜原子的溫度。
摘要(英) The maximum hardness of metallic multilayer films depends strongly on their modulation periods. In this work, molecular dynamic simulations of the impact of argon (Ar) clusters on the surface of gold (Au)/nickel (Ni) multilayer films with various modulation periods are performed to study function of the hardness and the modulation period on the nanometer scale. An Ar cluster with a high acceleration energy, 2.5 keV, makes an impact on the (111) surface of a thin film of approximately 350,000 metal atoms. Multilayered metal films were prepared from Au and Ni with a modulation period of 1.32nm-5.26nm. The simulation results reveal that when an Ar cluster with sufficient energy makes an impact on a multilayered film, and the hardness of the Au/Ni multilayered film increasing with increasing the modulation period in the range: 1.32 nm to 3.95 nm. However the hardness decreases as the modulation period from 3.95 nm to 5.26 nm.
A shock wave is produced in the film and a hemispherical crater forms on the surface about 2.95 ps after the impact. The shock wave consists of a plastic and an elastic wave. The elastic wave propagates to the bottom of the film but the plastic wave is prohibited from the interface between the Au and Ni films.
關鍵字(中) ★ 調製週期
★ 金/鎳多層膜
★ 分子動力學
★ 氬原子團
★ 硬度
關鍵字(英) ★ metal multilayer thin films
★ hardness
★ molecular dynamics simulation
★ modulation period
論文目次 目錄
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究金屬多層膜強化機制的文獻回顧 4
1-4 本文架構 8
第二章 分子動力學理論 9
2-1 模擬尺寸的大小與所適用的方法 9
2-2 分子動力學基本理論 12
2-3 分子間的作用力與勢能函數 13
2-4 運動方程式 29
2-5 邊界條件(Boundary Condition) 33
2-6 模擬流程 38
2-7 模擬系統平台 39
第三章 分子動力學數值模擬方法 41
3-1 截斷半徑法 41
3-2 平行計算法 45
第四章 氬原子團撞擊金屬薄膜 50
4-1 使用氬原子團去改變材料的表面形態 50
4-2 氬原子團撞擊金屬薄膜的分子動力學模型 52
4-3 材料的閥值能量(Threshold Energy) 62
4-4 薄膜表面的凹洞深度與入射的氬原子團總能量的關聯性 66
4-5 撞擊而產生的脈衝波(Shock Wave) 75
第五章 氬原子團撞擊金/鎳奈米多層膜 80
5-1 金屬強化機制 80
5-2 分子動力學模型 87
5-3 氬原子團的動能與尺寸 91
5-4 脈衝波在多層膜中的傳遞 106
5-5 奈米金/鎳多層膜的硬度與其調製週期的關係 110
第六章 結論及建議 130
參考文獻 133
參考文獻 參考文獻
[1] J. Musil , Surface and coatings Technology, 125(2000) p322.
[2] 黃國隆,超晶格結構之硬膜研究,國立中央大學光電科學與工程學系,碩士論文(2006).
[3] M. Cingi, F. Arisoy, G. Basman, K. Sesen, Materials Letters,55 (2002) p360.
[4] Koehler JS, Phys. Rev. B,2(2) (1970) p547.
[5] Anderson PM, Foecke T, Hazzledine PM. MRS Bull,24(2) ( 1999) p27.
[6] R.G. Hoagland, T.E. Mitchell, J.P. Hirth, H. Kung, Philo. Mag. A,82 (2002) p643.
[7] R.G. Hoagland, R.J. Kurtz, C.H. Henager Jr., Scripta Mat,50 (2004) p775.
[8] A. Misra, J.P. Hirth, R.G. Hoagland, Acta Mat.,53 (2005) p4817.
[9] D. Raabe, Computational materials science:the simulation of materials microstructures and properties (Wiley:Weinheim, New York,1998).
[10] J. H. Irving and J. G. Kirkwood, J. Chem. Phys., 18 (1950) p817.
[11] N. Metropolis, A. W. Rosenbluth, M. N. Rosenblluth, A. H. Teller,
and E. Teller, J. Chem. Phys., 21 (1953) p1087.
[12] M. P. Allen and D. J. Tildesley,Computer Simulation of Liquids(Oxford University Press, New York, 1987.)
[13] L. Verlet, Phys. Rev, 165 (1968) p201.
[14] B. Quentrec and C. Brot, J. Comput. Phys., 13 (1975) p430.
[15] G. S. Grest, B. Dünweg and K. Kremer, Phys. Comm., 55(3) (1989) p269.
[16] K. T. Lim, S. Brunett, J. of Computational Chemistry, 18(14) (1997) p501.
[17] D. Roccatano, R. Bizzarri, J. of Computational Chemistry,19 (1998) p685.
[18] S. Toyoda, H. Miyagawa, J. of Computational Chemistry,20(2) (1999) p185.
[19] J. M. Haile, Molecular Dynamics Simulation Elementary Method (John Wiley & Sons Inc, 1997). Chap. 3.
[20] A. RAHMAN, phys. Rev.,136(2A) (1964) p405.
[21] M. S. Daw and M.I. Baskes , Phys. Rev B, 29 (1984) p6443.
[22] F. H. Stillinger and T. A. Weber, Phys. Rev. B,31 (1985) p5262.
[23] G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, “Intermolecular Forces,” (Oxford University Press, London, 1987).
[24] D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, 1997). Chap. 1.
[25] J. E. Lennard-Jones, Proceedings of the Royal Society,106A (1924) p441.
[26] S. D. Stoddard , J. Ford, Phys. Rev. A,8 (1973) p1504.
[27] L. A. Girifalco, V. G. Weizer, physical Review, 114 (1959) p3.
[28] F. Milstein, J. Annl, Physics, 44 (1973) p9.
[28] S. D. Stoddard and J. Ford, Phys. Rev. A, 8 (1973) p1504.
[29] F. Cleri, V. Rosato, Physical Review B,48 (1993) p22.
[30] V. Rosato, M. Guillope, B. Legrand, Philosophical Magazine A, 59 (1989) p321.
[31] F. H. Stillinger, T. A. Weber, Phys. Rev. B,31 (1985) p5262.
[32] William H. Press, et al., Numerical Recipes in Fortran 90 (or C) : The art of
scientific and parallel computing, (Cambridge University Press, 1996).
[33] M. P. Allen, D. J. Tildesley, Computer simulation of liquids (Clarendon Press:Oxford, 1990), pages 73-84 and 340-342.
[34] D. Frenkel, B. Smit, Understanding molecular simulation from algorithms to applications (Academic Press: San Diego, 1996), pages 59-67.
[35] Dierk Raabe, Computational materials science: the simulation of materials,
microstructures and properties (Wiley-VCH: Weinheim, 1998), pages 29-40.
[36] J. M. Goodfellow et al., Molecular Dynamics ( CRC Press, Boston, 1990).
[37] D. W. Heermann, Computer Simulation Method (Springer-Verlag, Berlin, 1990).
[38] M. P. ALLEN and D.J. TILDESLEY, Computer Simulation of Liquids (Clarendon Press:Oxford,1990)
[39] D. C. RAPAPORT, The Art of Molecular Dynamics Simulation - 2nd edn (Cambridge University Press, 2004)
[40] J. M. HAILE, Molecular Dynamics Simulation Elementary Method (John Wiley & Sons Inc, 1997).
[41] D. Frenkel and B.Smith,Understanding molecular simulation from algorithms to application, (Academic Press:San Diego,1996) chap. 6.
[42] S. Maruyama, Advances in Numerical Heat Transfer, vol. 2, ed. W. J. Minkowycz and E. M. Sparrow, Taylor & Francis (2000) p189.
[43] C. Kittel, Introduction to solid state physics 7th ed., (John Wiley, New York, 1996) p. 18.
[44] 朱訓鵬,分子動力學與平行運算於奈米薄膜沉積模擬之應用,國立成功大學機械研究所,博士論文,(2002).
[45] S. Plimpton, Journal of Computational Physics,117 (1995) p1.
[46] 鄭守成,”平行程式撰寫”, 高速電腦中心 (2004).
[47] R. Kramer, Y. Yamaguchi and J. Gspann, Surf. Interface Anal. 36 (2004) p148.
[48] Z. Insepov, L.P. Allen, C. Santeufemio, K.S. Jones, I. Yamada, Nucl. Instr. And Meth. In Phys. Res. B,202 (2003) p261.
[49] H. N. G. Wadley, X. Zhou and R. A. Johnson, Mat. Res. Soc. Symp. Proc., 672 (2001) pO4.1.1.
[50] R. A. Johnson, Phys. Rev. B,39 (1988) p12554.
[51] T. Aoki, J. Matsuo, G. Takaoka, Nucl. Instr. and Meth. B, 202 (2000) p278.
[52] T. Aoki, J. Matsuo, Nucl. Instr. and Meth. B,242 (2006) p517.
[53] Z. Insepov, R. Manory, J. Matsuo, I. Yamada, Phys Rev. B,61 (2000) p8744.
[54] C. S. Coffey, in L. Davison (Ed.), High-Pressure Shock Compression of Solids Ⅲ( Springer, New York, 1997) p59.
[55] G.V. Samsonov (Ed.), Handbook of the physicochemical properties of the elements, IFI-Plenum (New York, USA, 1968).
[56] W. D. Callister, Materials Science and Engineering: An Introduction (John Wiley 1999, 5th edition)
[57] K. O. Schweitz, J. Chevallier, J. Bottiger, Philosophical Mag. A, 81(8) (2001) p2021.
[58] S. P. Wen, R. L. Zong, F. Zeng, Y. Gao, F, Pan, Acta Mater. 55 (2007) p345.
[59] G. H. Yang, B. Zhao, Y. Gao, F. Pan, Surf. Coat. Tech., 191 (2005) p127.
[60] J. K. Dines and J. M. Walsh, in High-Velocity Impact Phenomena, edited by R. Kinslow (Academic, New York, 1970), Chap.3, p. 45.
[61] J. W. Gehring, in High-Velocity Impact Phenomena (Ref. 56), Chap. 9, p. 463.
[62] D. Maxwell, in Impact and Explosion Crating, edited by D. J. Roddy, R. O. Pepin, and R. B. Merrill (Pergamon, New York, 1977), p1003.
[63] J. Gspann, Physics and Chemistry of Finite Systems: From Clusters to Crystals, Vol. 374 of NATO Advanced Study Institute,Series C: Mathematical and Physical Sciences, edited by P.Jena et al. (Kluwer, Dordrecht, 1992) p1115.
[64] W. D. Nix, Metall. Trans. A, 20 (1989) p2217.
[65] W. A. Jesser, T. Kui, Mater. Sci. Eng. A, 164 (1993) p101.
指導教授 李正中(Cheng-Chung Lee) 審核日期 2009-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明