博碩士論文 101521097 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:131 、訪客IP:3.16.48.63
姓名 劉晉溢(Chin-Yi Liu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 多輸入多輸出前編碼系統之奇異值分解演算法與架構設計
(Design of SVD Algorithm and Architecture for MIMO Precodig Systems)
相關論文
★ 具輸出級誤差消除機制之三位階三角積分D類放大器設計★ 應用於無線感測網路之多模式低複雜度收發機設計
★ 用於數位D類放大器的高效能三角積分調變器設計★ 交換電容式三角積分D類放大器電路設計
★ 適用於平行處理及排程技術的無衝突定址法演算法之快速傅立葉轉換處理器設計★ 適用於IEEE 802.11n之4×4多輸入多輸出偵測器設計
★ 應用於無線通訊系統之同質性可組態記憶體式快速傅立葉處理器★ 3GPP LTE正交分頻多工存取下行傳輸之接收端細胞搜尋與同步的設計與實現
★ 應用於3GPP-LTE下行多天線接收系統高速行駛下之通道追蹤與等化★ 適用於正交分頻多工系統多輸入多輸出訊號偵測之高吞吐量QR分解設計
★ 應用於室內極高速傳輸無線傳輸系統之 設計與評估★ 適用於3GPP LTE-A之渦輪解碼器硬體設計與實作
★ 下世代數位家庭之千兆級無線通訊系統★ 協作式通訊於超寬頻通訊系統之設計
★ 適用於3GPP-LTE系統高行車速率基頻接收機之設計★ 多使用者多輸入輸出前編碼演算法及關鍵組件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在下一代通訊5G系統中,超大型多輸入多輸出系統(large-scale MIMO system)被認為是候選技術。隨著下一代通訊系統中基地台所能制定的天線數目增加,超大型多輸入多輸出系統相對於傳統多輸入多輸出系統必須承受更高的運算複雜度。而為因應超大型多輸入多輸出系統所增加的運算複雜度,多種前編碼(precoding)技術相應而生。奇異值分解(singular value decomposition, SVD)是一種正交矩陣分解法,應用在無線通訊的前編碼矩陣設計上,可將超大型多輸入多輸出系統通道矩陣分解成互不影響的數個子通道。由於奇異質分解的效能會受到最弱的通道增益影響而衰減,因此通常選擇具較強空間增益的部分空間子通道進行傳輸。我們提出之奇異值分解演算法分為三階段,分別為基於Givens rotation之雙對角線化演算法、Golub-Reinsch SVD演算法輔以積極矩陣劃分和矩陣縮減機制與位移QR輔以提前終止機制演算法。
在硬體設計方面則根據Golub-Reinsch SVD演算法來設計硬體架構並透過C模擬硬體行為,預計支援維度為2×2~8×8複數矩陣。我們所提出之奇異值分解處理器擁有兩種工作模式,包含單一輸入矩陣奇異值分解和雙輸入矩陣平行奇異值分解。單一輸入矩陣奇異值分解支援維度為2×2~8×8之複數矩陣,雙輸入矩陣平行奇異值分解支援兩個維度為2×2~4×4之複數矩陣,並且此兩種模式皆支援非方陣之複數矩陣,如8×6、4×3等等。奇異值分解處理器採用以管線化(pipeline) coordinate rotation digital computer (CORDIC)為基礎的處理單元(processing element, PE)來完成奇異值分解。所提出的單一輸入8×8矩陣奇異值分解模式模擬時脈週期為445(clock cycles),所提出的雙輸入4×4矩陣平行奇異值分解模式模擬時脈週期為118(clock cycles)。
摘要(英) In this thesis, we discuss the precoding schemes for multiple-input multiple-output (MIMO) systems. Singular value decomposition (SVD) plays an important role for MIMO precoding. To reduce the complexity of precoding based on SVD for large-scale MIMO systems, we first analyze the impact of SVD accuracy to the system performance and derive the error tolerance regarding the constellation, target bit error rate, and the number of transmitted spatial streams. Then, to perform SVD with given accuracy, aggressive split/deflation in the Golub-Reinsch (GR) SVD algorithm is adopted for finding the singular values. Furthermore, the shifted QR algorithm with the early termination mechanism is proposed to obtain only the desired singular vectors instead of all the singular vectors. Finally, we show that the aggressive split/deflation and early termination are effective, especially to process the correlated channel matrixes. The proper threshold setting can maintain the system performance with only tiny degradation. Compared to other SVD algorithms, the proposed scheme can achieve 15%~60% complexity reduction.
In hardware design, we design the architecture of SVD processor according to GR SVD algorithm. The SVD processor supports two modes: SVD for single matrix and parallel processing SVD for two matrices. The mode of SVD for single matrix can compute the SVD of 2×2~8×8 complex matrices. The mode of parallel processing SVD for two matrices can compute the SVD of 2×2~4×4 complex matrices. Furthermore, the two modes of SVD processor can compute the SVD of none-square complex matrices (e.g. 8×6, 4×3). In architecture design of SVD processor, we propose a pipelined CORDIC based processing element (PE) to implement GR SVD algorithm. 445 and 118 clock cycles for processing one 8×8 complex matrix and two 4×4 complex matrices.
關鍵字(中) ★ 多輸入多輸出前編碼系統
★ 超大型多輸入多輸出前編碼系統
★ 奇異值分解
關鍵字(英) ★ MIMO precoding system
★ large-scale MIMO precoding system
★ SVD
論文目次 目錄__ iii
圖示目錄 v
表格目錄 ix
第一章 緒論 1
1.1 簡介 1
1.2 研究動機 1
1.3 論文組織 2
第二章 超大型多輸入輸出系統(Large-scale MIMO System) 3
2.1 超大型多輸入多輸出系統(Large-scale MIMO System)介紹 3
2.2超大型多輸入多輸出系統前編碼系統(Large-scale MIMO Precoding System) 5
2.2.1 超大型天線陣列(Large-scale Antenna Array) 6
2.3超大型多輸入多輸出奇異值分解前編碼系統(The SVD Based Large-scale MIMO Precoding System) 8
2.4奇異值分解相關演算法(SVD Algorithms) 9
2.4.1 Jacobi演算法(Two-sided Jacobi Algorithm) 10
2.4.2 Explicit QR演算法 11
2.4.3 Orthogonal Quotient Difference 演算法 17
2.4.4 Implicit QR 演算法 20
第三章 所提出之超大型多輸入多輸出奇異值分解前編碼系統(The Proposed SVD Based Large-scale MIMO Precoding System) 27
3.1超大型多輸入多輸出奇異值分解前編碼系統分析與模擬 (The Simulation and Analysis of Large-scale MIMO Precoding System) 27
3.2所提出之三階段奇異值分解演算法(Three Phase SVD)介紹 32
3.2.1第一階段雙對角線化演算法(Algorithm for Bidiagonalization) 32
3.2.2第二階段奇異值演算法(Algorithm for Solving Singular Values) 34
3.2.3第三階段奇異向量演算法(Algorithm for Solving Singular Vector) 39
3.3模擬與比較(Simulation and Comparison) 41
第四章 硬體架構設計與實現 49
4.1硬體設計流程 49
4.2 奇異值分解硬體 50
4.2.1 CORDIC硬體 51
4.2.2應用於奇異值向量陣列與奇異值陣列之PE設計 57
4.2.3矩陣存取硬體設計 65
4.2.4雙對角線化控制電路 (Bidiagonalization Controller) 67
4.2.5對角線化控制電路 (Diagonalization Controller) 78
4.3決定相關硬體設計參數 84
第五章 結論 91
參考文獻 [1] Erik G. Larsson, Ove Edfors, Fredrik Tufvesson, Thomas L. Marzetta, “Massive MIMO for Next Generation Wireless Systems,” IEEE Communications Magazine, Vol. 52, No. 2, pp. 186-195, Feb. 2014.
[2] Ngo, Hien Quoc, “Massive MIMO: Fundamentals and System Designs,” doctoral thesis, Linköping university, department of electrical engineering, communication systems. Linköping university, the institute of technology.
[3] Y. G. Lim and C. B. Chae, “Compressed channel feedback for correlated massive systems,” in Proc. of International Conference on Communications 2014, pp. 360-364.
[4] T. S. Pollock and T. D. A. R. A. Kennedy, “Introducing ’space’ into space-time MIMO capacity calculations: a new closed form upper bound,” in Proc. IEEE Int. Conf. on Telecommun., March 2003, pp. 1536–1541
[5] L. Hogben, "Handbook of Linear Algebra," Chapmen & Hall/CRC, Second Edition, 2013.
[6] Gene H. Golub and Charles F. Van Loan, “Matrix Computations,” Chapter 8, Third Edition, 1996.
[7] J. H. Wilkinson, “Global convergence of tridiagonal QR algorithm with origin shifts,” Linear Algebra Appl. 1, 1968, 409-420G.
[8] T.-L. Wang and W. B. Gragg, “Convergence of the shifted QR algorithm for unitary Hessenberg matrices,” J. Comput. Appl. Math., 16, 1986
[9] Wen-Da Chen and Yin-Tsung Hang, “A Constant Throughput Geometric Mean Decomposition Scheme Design for Wireless MIMO Precoding,” IEEE Transactions on Vehicular Technology, volume: 62, issue: 5, pp. 2080-2090.
[10] K. V. Fernando, and B. N. Parlett, “Accurate singular values and differential qd algorithms, ” Mumerische Mathematik, Springer-Verlag, 1994
[11] H. Golub and C. Reinsch, “Singular value decomposition and least squares solutions,” Numer. Math., vol. 14, no. 5, pp. 403-420, Apr. 1970
[12] Demmel, James, and William Kahan. “Accurate singular values of bidiagonal matrices.” SIAM Journal on Scientific and Statistical Computing, pp.873-912, 1990.
[13] S. Zhou and G. B. Giannakis, “Adaptive modulation for multi-antenna transmissions with channel feedback, ” in Proc. of International Conference on Communications 2003, pp. 2281-2285
[14] Z.-Y. Huang and P.-Y. Tsai, “Efficient implementation of QR decomposition for gigabit MIMO-OFDM systems,” IEEE Transactions on Circuits and Systems, vol. 58, no. 10, pp. 2531-2542, 2011.
[15] A W. Gander, M. J. Gander, F. Kwok, “Scientific Computing: An Introduction Using Maple and Matlab",” Springer, 2014.
[16] T. L Wang and W. B. Gragg, “Convergence of the shifted QR algorithm for Unitary Hessenberg matrices,” Mathematics of Computation, vol. 71, pp. 1473-1496, Nov. 2001.
[17] L. Liang, W. Xu, and X. Dong, “Low-complexity hybrid precoding in massive multi-user MIMO systems, ” IEEE Wireless Communications Letters, vol. 3, pp. 653-656, Dec. 2014.
[18] P.-Y. Tsai and C.-Y. Liu, “Reduced-complexity SVD with adjustable accuracy for precoding in large-scale MIMO systems,” IEEE Workshop on Signal Processing Systems (SiPS), Oct. 2015.
[19] Chen, Hsin-Chang, “Design of Reconfigurable High Speed SVD Processor,” Jul. 2013.
[20] Cheng-Zhou Zhan, Yen-Liang Chen, and An-Yeu Wu, “Iterative Superlinear-Convergence SVD Beamforming Algorithm and VLSI Architecture for MIMO-OFDM Systems,” IEEE Trans. Signal Process., vol. 60, no. 6, pp. 326-3277, Jun. 2012.
[21] C.-H. Yang, C.-W. Chou, C.-S. Hsu and C.-E. Chen, “A Systolic Array Based GTD Processor With a Parallel Algorithm,” IEEE Trans. Circuits and Systems I, vol. 62, iss. 4. pp. 1099- 1108, Apr. 2015
指導教授 蔡佩芸(Pei-Yun Tsai) 審核日期 2016-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明