博碩士論文 101521048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.137.171.121
姓名 冉為誠(Wei-chen Ran)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 矽基板貫孔的製作和量測
(Fabrication and Measurement of Through Substrate Vias on Silicon)
相關論文
★ 分佈式類比相位偏移器之設計與製作★ 以可變電容與開關為基礎之可調式匹配網路應用於功率放大器效率之提升
★ 全通網路相位偏移器之設計與製作★ 使用可調式負載及面積縮放技巧提升功率放大器之效率
★ 應用於無線個人區域網路系統之低雜訊放大器設計與實現★ 應用於極座標發射機之高效率波包放大器與功率放大器
★ 數位家庭無線資料傳輸系統之壓控振盪器設計與實現★ 鐵電可變電容之設計與製作
★ 用於功率放大器效率提升之鐵電基可調式匹配網路★ 基於全通網路之類比式及數位式相位偏移器
★ 使用鐵電可變電容及PIN二極體之頻率可調天線★ 具鐵電可變電容之積體被動元件製程及其應用於微波相位偏移器之製作
★ 使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器★ 具矽基板貫孔之鐵電可變電容的製作與量測
★ 使用鐵電可變電容之頻率可調微帶貼片天線★ 具矽基板貫孔之鐵電可變電容及矽化鉻薄膜電阻的製作與量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 基板貫孔近年來受到不少關注。在封裝技術的應用方面,可以透過基板貫孔的方式使晶片垂直連接,使總體的晶片面積縮小。在微波電路方面,基板貫孔可用於實現基於微帶線結構的電路,而不會僅限於單一平面的傳輸線結構(如共平面波導與槽線),使電路設計更自由且具彈性。
本論文主要著重於矽基板貫孔的製程發展。我們探討不同的矽蝕刻製程的優劣,最後選擇以反應離子蝕刻(reactive ion etching, RIE)機台搭配負光阻KMPR 1025來進行矽基板貫孔的製作,並以金電鍍的方式將連接基板兩面的金屬鍍厚。我們於厚度為150 μm的高電阻率矽基板上製作出的最小貫孔直徑為30 μm;量測結果顯示,在2.4 GHz的貫孔電感感值可低於100 pH,而貫孔電阻則可小於0.5 Ω。我們根據文獻中圓柱型貫孔的電感公式計算理論值,與量測得的電感值比較,發現量測值皆在理論值預估的範圍內。
我們成功地發展出矽基板貫孔的製程,製作出具低電感值及低電阻值的基板貫孔;此製程未來將可用於基於微帶線結構的微波電路的製作。
摘要(英) Through substrate via (TSV) has been receiving much attention in recent years. As a packaging technology, TSVs can be used for connecting chips vertically, reducing the footprint of the overall system. For microwave circuits, TSVs are used for realizing microstrip-based circuits. Without TSVs, the design would be limited to uniplanar structures, such as coplanar waveguides and slot lines. Therefore, TSV provides more design freedom and flexibility to the circuit designers.
This work focuses on the development of the fabrication process for TSVs on silicon. Different techniques for silicon etching are investigated and compared. Finally, reactive ion etching (RIE) with negative photoresist KMPR 1025 is chosen for the fabrication of TSVs on silicon and the metal that connects the top and bottom side of the substrate is thickened by gold electroplating. The minimum diameter of the TSV we fabricate on a 150-μm-thick high-resistivity silicon substrate is 30 μm. Measurement results show that, at 2.4 GHz, the inductance and resistance of the TSVs are less than 100 pH and 0.5 Ω, respectively. Based on the formula provided in the literature, we calculate the theoretical values of the inductances of vias with various diameters. Our measured inductance values fall within the range predicted by the theory.
In conclusion, a fabrication process for TSVs on silicon is developed. TSVs with low inductance and low resistance are fabricated. The developed process is suitable for realizing microwave circuits based on microstrip structure.
關鍵字(中) ★ 矽基板貫孔 關鍵字(英) ★ Through substrate via
論文目次 目錄
摘要 I
Abstract III
誌謝 IV
目錄 V
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1–1 研究動機 1
1–2 基板貫孔技術介紹 1
1–3 矽深蝕刻技術介紹 2
1–4 章節介紹 3
第二章 基板貫孔 4
2–1 簡介 4
2–2 矽蝕刻測試 5
2–3 基板貫孔光罩設計 13
2–4 基板貫孔製作流程 21
2–4–1 下電極製作流程 21
2–4–2 氮化矽保護層製作 23
2–4–3 接腳層與BCB鈍化層製作 25
2–4–4 背面貫孔及金屬製作 32
2–4–5 接腳層開洞流程 36
第三章 量測與電路模型之建立 38
3–1 量測結果 38
3–1–1 測試基板貫孔編號VIA–1量測結果 41
3–1–2 測試基板貫孔編號VIA–2量測結果 45
3–1–3 測試基板貫孔編號VIA–3量測結果 48
3–1–4 結果與討論 51
3–2 基板貫孔電路模型建立 52
第四章 結論 54
參考文獻 55
參考文獻 [1] J. G. Hartnett, M. E. Tobar, E. N. Ivanov, and J. Krupka “Room temperature measurement of the anisotropic loss tangent of sapphire using the whispering gallery mode technique,” IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control., vol. 53, no. 1, pp. 34–38, Jan. 2006.
[2] L. Lin, T.-C. Yeh, J.-Lin Wu, G. Lu, T.-F. Tsai, L. Chen, and A.-T. Xu, “Reliability characterization of chip-on-wafer-on-substrate (CoWoS) 3D IC integration technology,” Proc. IEEE Electron. Compon. and Tech., pp. 366–371, May. 2013.
[3] W. Woods, G. Wang, and H. Ding, “Microwave compact passive circuit model of isolated interconnect over a silicon substrate with a through-silicon via (TSV) ground supply network,” European Microw. Integrated Circuits Conference., pp. 342–345, Oct. 2008.
[4] Y. P. R. Lamy, K. B. J. F. Roozeboom, D. J. Gravesteijn, and W. F. A. Besling, “RF characterization and analytical modelling of through silicon vias and coplanar waveguides for 3D integration” IEEE Trans. Aadvanced Packing., vol. 33, no. 4, pp. 1072–1079, Nov. 2010.
[5] S. Spiesshoefer, L. Schaper, S. Burkett, and G.Vangara, “Z-axis interconnects using fine pitch, nanoscale through-silicon vias: process development” Proc. IEEE Electron. Compon. and Tech., vol. 1, pp. 466–471, Jun. 2014.
[6] J. V. Olmen et al., "3D stacked IC demonstration using a through silicon via first approach", Technical Digest of the International Electron Device Meeting., pp. 1–4, Dec. 2008.
[7] Z. Xu, and J.-Q. Lu, “Through-silicon-via fabrication technologies, passives extraction, and electrical modeling for 3-D integration/packaging,” IEEE Trans. Semiconductor Manufacturing., vol. 26, no. 1, pp. 23–24, Feb. 2013
[8] E.-H. Chen et al., "Fine-pitch backside via-last TSV process with optimization on temporary glue and bonding conditions" Proc. IEEE Electron. Compon. and Tech., pp. 1811–1814, May. 2013
[9] H. V. Jansen, J. G. E. Gardeniers, M. J. de Boer, M. C. Elwenspoek, and J. H. J. Fluitman, “A survey on the reactive ion etching of silicon,” J. Micromech. Microeng., vol. 6, pp. 14–28, Dec. 1996.
[10] B. Wu, A. Kumar, and S. Pamarthy, “High aspect ratio silicon etch: A review,” J. Appl. Phys., vol. 108, no. 5, pp. 51101–51121, Jul. 2010.
[11] F. S.-S. Chien, C.-L. Wu, Y.-C. Chou, T. T. Chen, S. Gwob, and W.-F. Hsieh, "Nanomachining of (110)-oriented silicon by scanning probe lithography and anisotropic wet etching", Appl. Phys. Lett., vol. 75, no. 16, pp. 2429–2431, Aug. 1999
[12] A. R. Djordjevic, T. K. Sarkar, and S. M. Rao, “Analysis of finite conductivity cylindrical conductors excited by axially independent TM electromagnetic field,” IEEE Trans. Microw. Theory Tech., vol. MTT-33, no. 10, pp. 960–966, Oct. 1985.
[13] G. I. Costache, M.W. Nemes, and E. M. Petriu, “Finite element method analysis of the influence of the skin effect, proximity, and eddy currents on the internal magnetic field and impedance of a cylindrical conductor of arbitrary cross section,” in Proc. Can. Electrical and Computer Engineering Conf., pp. 253–256, Sep. 1995.
[14] L. L. W. Leung, and K. J. Chen, “Microwave characterization and modeling of high aspect ratio through-wafer interconnect vias in silicon substrates,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 8, pp. 2472–2480, Aug. 2005.
[15] M. E. Goldfarb and R. A. Pucel, “Modeling via hole grounds in microstrip,” IEEE Microw. Guided Wave Lett., vol. 1, no. 6, pp. 135–137, Jun. 1991.
指導教授 傅家相(Jia-shiang Fu) 審核日期 2016-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明