博碩士論文 102326009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.217.45.29
姓名 許琇茹(HSIU-JU,HSU)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 利用碳氣凝膠紙電容吸附處理水中銨離子之研究
(The removal of ammonium ion via the capacitive deionization using the carbon aerogel electrodes)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 廢污水之氨氮主要來自工業生產與生活污水,其對生態具有多方面的危害,包括耗用水中溶氧、產生臭味、與造成水體優氧化等,因此考量其對環境與生物健康有一定程度之危害,許多國家皆設立法令控制其排放許可濃度,且越來越嚴苛。本研究使用碳氣凝膠紙為電極,利用電容去離子機制去除銨離子。於研究中,使用循環伏安法來分析碳氣凝膠電極之電化學特性,結果顯示電容量最高約為38 F/g,當提升掃速時比電容量會下降,但電容圖形維持相似的形狀。在電容吸附批次系統中,當初始銨離子濃度為40 ppm且外加電壓從1.0 V上升至1.6 V時,銨離子的去除量從0.15 mg/g上升到1.85 mg/g;而銨離子濃度由10 ppm提高至40 ppm且外加電壓1.1 V或1.6 V時,提升濃度可使去除量增加,但1.1 V時會因吸附飽和量有限而使去除量無法持續提升。並在電容吸附研究中,發現硝酸根離子與亞硝酸根離子的產生,推測具有氧化還原反應發生。電極穩定性與再生性結果,以循環伏安法連續掃描電極三百次,其圖形不隨掃描次數改變,而電容吸附實驗反覆充放電三次的情形下,導電度具有相同的下降與上升趨勢,且下降的幅度維持一致。
摘要(英) Ammonium in wastewater are harmful to the environment for it is odorous, would consume oxygen and cause eutrophication. Therefore, the regulations on the ammonium have become stricter. This study focused on the removal of ammonium via the capacitive deionization using carbon aerogel electrodes. The electrochemical characteristics of carbon aerogel electrode were investigated vie cyclic voltammetry experiment. The results showed that the highest specific capacitance of carbon aerogel electrode is about 38 F/g. Removal of ammonium vie capacitive deionization were studied. The results showed that the removal amount of ammonium ion increases from 0.15 mg/g to 1.85 mg/g when the applied voltage increased from 1.0 V to 1.6 V with the initial ammonium ion concentration of 40 ppm. In the meantime, trace amount of nitrate and nitrite have been found, which may be due to the oxidation of ammonium ion. The stability of the electrode was established by repeating the cyclic voltammetry measurements at scan rate of 100 mV/s for 300 cycles, which showed 100 % retention. The carbon aerogel electrodes were regenerated in charge/discharge cycle, the conductivity profile suggested that the removal of ammonium ions was repeatedly for up to three cycles.
關鍵字(中) ★ 碳氣凝膠紙
★ 電容去離子
★ 電容吸附
★ 銨離子
關鍵字(英) ★ carbon aerogel
★  CDI
★  capacitance adsorption
論文目次 目錄
摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 IX
表目錄 XI
第一章 前言 1
1-1研究緣起 1
1-2 研究內容與目的 2
1-3 研究流程 3
第二章 文獻回顧 4
2-1 電容去離子技術 4
2-1-1 電容器 5
2-1-2 電雙層理論(electric double layer, EDL) 6
2-1-3 特定吸附 7
2-1-4電雙層重疊 9
2-2 電容去離子技術之發展與應用 10
2-2-1 多孔洞碳電極 11
2-2-2 電容去離子之影響因素 14
2-2-3 電容去離子技術現況 17
2-3 水中之氨氮 20
2-3-1 基本特性 20
2-3-2 氨氮之危害 20
2-3-3 氨氮處理技術 21
2-3-4 管制現況 24
第三章 實驗方法 25
3-1實驗藥品與設備 25
3-1-1實驗藥品 25
3-1-2 實驗設備 26
3-2實驗方法 29
3-2-1 碳氣凝膠特性分析 29
3-2-2 電極電容特性分析 30
3-2-3 電容吸附實驗 32
3-2-4 水質分析 34
3-2-5 去除量、脫附量計算 34
第四章 結果與討論 36
4-1 電極表面特性分析 36
4-1-1表面結構分析 37
4-1-2比表面積與孔徑分佈 38
4-2 電容特性分析 40
4-2-1 掃描速率之影響 40
4-2-2 電解質濃度之影響 43
4-3 電容吸附現象 47
4-3-1 非電容吸附與電容吸附 47
4-3-2 電壓對去除氨氮之影響 52
4-3-3 初始濃度對去除氨氮之影響 62
4-3-4 綜合評估 66
4-4 含氮物質之宿命 67
4-4-1 硝酸根離子與亞硝酸根離子之量測 67
4-4-2 含氮物質反應推估 72
4-5 電極之穩定性與再生 76
4-5-1 電極之穩定性 76
4-5-2 電極之再生性 78
第五章 結論與建議 79
5-1 結論 79
5-2 建議 81
附錄 82
參考文獻 83



圖目錄
Fig. 1-1 研究流程圖 3
Fig. 2-1 電容去離子示意圖 4
Fig. 2-2 Stern電雙層模型示意圖 8
Fig. 2-3 電雙層重疊示意圖 9
Fig. 2-4 多孔性碳材結構示意圖 13
Fig. 3-1 循環伏安法之電位控制圖 30
Fig. 3-2 理想電容之循環伏安圖 31
Fig. 3-3 三極式電解槽 32
Fig. 3-4 實驗系統架構 33
Fig. 3-5 採樣時間點示意圖 34
Fig. 4-1 碳氣凝膠氮氣吸脫附等溫線 38
Fig. 4-2 碳氣凝膠平均孔徑分布圖 39
Fig. 4-3 各掃描速率之碳氣凝膠電極循環伏安比電容圖。 42
Fig. 4-4各電解質濃度對碳氣凝膠電極之循環伏安比電容圖之影響 46
Fig. 4-5 DI水空白實驗之導電度變化 47
Fig. 4-6 非電容吸附之導電度變化情形 49
Fig. 4-7 初始濃度對非電容吸附量之影響 49
Fig. 4- 8 銨離子濃度與導電度隨時間之變化 51
Fig. 4-9 各電壓對溶液導電度之變化情形 53
Fig. 4- 10 電容吸附實驗之再現性 56
Fig. 4- 11 電容吸附實驗之導電度變化。 57
Fig. 4-12 電壓對銨離子去除量之影響 58
Fig. 4-13 施加電壓為1.1 V時銨離子之濃度變化 60
Fig. 4-14 電壓對銨離子脫附之影響 61
Fig. 4-15 初始濃度對去除量之影響 64
Fig. 4-16 初始濃度對去除效率之影響 65
Fig. 4-17 各施加電壓對溶液中硝酸根離子濃度之影響 69
Fig. 4-18 碳氣凝膠紙之FT-IR圖譜 70
Fig. 4-19 不同電壓之pH值變化 74
Fig. 4-20 碳氣凝膠紙之SEM圖 75
Fig. 4-21 重複掃描碳氣凝膠電極之CV圖變化 77
Fig. 4-22 連續充放電之導電度變化 78


表目錄
Table. 3-1 實驗藥品 25
Table. 4-1 碳氣凝膠表面積與孔徑特性 39
Table. 4-2 各掃描速率之碳氣凝膠電極循環伏安比電容值 42
Table. 4-3電容吸附前後碳氣凝膠紙元素分析結果 71
Table. 4-4 水中銨離子可能發生之反應 74
參考文獻 AlMarzooqi, F. A., Al Ghaferi, A. A., Saadat, I. and Hilal, N., "Application of capacitive deionisation in water desalination: a review", Desalination, 342, 3-15 (2014).

An, H., Wang, Y., Wang, X., Zheng, L., Wang, X., Yi, L., Bai, L. and Zhang, X., "Polypyrrole/carbon aerogel composite materials for supercapacitor", Journal of Power Sources, 195, 6964-6969 (2010).

Bard, A. J., Faulkner, L. R., ′′Electrochemical Methods: Fundamentals and Applications′′, Wiley, New York (1980)

Biener, J., Stadermann, M., Suss, M., Worsley, M. A., Biener, M. M., Rose, K. A. and Baumann, T. F., "Advanced carbon aerogels for energy applications", Energy & Environmental Science, 4, 656 (2011).

Biesheuvel, P. M., Zhao, R., Porada, S. and van der Wal, A., "Theory of membrane capacitive deionization including the effect of the electrode pore space", Journal of colloid and interface science, 360, 239-248 (2011).

Blair, J. W. and Murphy, G. W., "Electrochemical demineralization of water with porous electrodes of large surface area.", American Chemical Society, 27, 206–223 (1960).

Cai, P. F., Su, C. J., Chang, W. T., Chang, F. C., Peng, C. Y., Sun, I. W., Wei, Y. L., Jou, C. J. and Wang, H. P., "Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene", Marine pollution bulletin, 85, 733-737 (2014).

Caudle, D. D., Tucker, J. H., Cooper, J. L., Arnold, B. B., Papastamataki, A., ′′Electrochemical demineralization of water with carbon electrodes′′, Oklahoma University Research Institute (1996)




Farmer, J. C., Bahowick, S. M., Harrar, J. E., Fix, D. V., Martinelli, R. E., Vu, A. K. and Carroll, K. L., "Electrosorption of chromium ions on carbon aerogel electrodes as a means of remediating ground water", Energy and Fuels, 11, 337-347 (1997).

Farmer, J. C., Fix, D. V., Mack, G. V., Pekala, R. W. and Poco, J. F., "Capacitive deionization of NaCI and NaNO3 solutions with carbon aerogel electrodes", Journal of The Electrochemical Society, 143, 159-169 (1996).

Frackowiak, E. and Beguin, F., "Carbon materials for the electrochemical storage of energy in capacitors", Carbon, 39, 937-950 (2001).

Gabelich, C. J., Tran, T. D. and Suffet, I. H. M., "Electrosorption of inorganic salts from aqueous solution using carbon aerogels", Environmental Science and Technology, 36, 3010–3019 (2002).

Hou, C. H. and Huang, C. Y., "A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization", Desalination, 314, 124-129 (2013).

Huang, W., Zhang, Y., Bao, S. and Song, S., "Desalination by capacitive deionization with carbon-based materials as electrode: a review", Surface Review and Letters, 20, 1330003-1 - 1330003-10 (2013).

Hwang, S. W. and Hyun, S. H., "Capacitance control of carbon aerogel electrodes", Journal of Non-Crystalline Solids, 347, 238-245 (2004).

Johnson, A. M. and Newman, J., "Desalting by Means of Porous Carbon Electrodes", The Electrochemical Society, 118, 510-517 (1971).

Jung, H. H., Hwang, S. W., Hyun, S. H., Lee, K. H. and Kim, G. T., "Capacitive deionization characteristics of nanostructured carbon aerogel electrodes synthesized via ambient drying", Desalination, 216, 377-385 (2007).

Kim, K. W., Kim, Y. J., Kim, I. T., Park, G. I. and Lee, E. H., "The electrolytic decomposition mechanism of ammonia to nitrogen at an IrO2 anode", Electrochimica Acta, 50, 4356-4364 (2005).
Landon, J., Gao, X., Kulengowski, B., Neathery, J. K. and Liu, K., "Impact of pore size characteristics on the electrosorption capacity of carbon xerogel electrodes for capacitive deionization", Journal of the Electrochemical Society, 159, A1861-A1866 (2012).

Lee, J. H., Bae, W. S. and Choi, J. H., "Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process", Desalination, 258, 159-163 (2010).

Li, G. R., Feng, Z. P., Ou, Y. N., Wu, D., Fu, R. and Tong, Y. X., "Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors", Langmuir 26, 2209-2213 (2010).

Li, L., Zou, L., Song, H. and Morris, G., "Ordered mesoporous carbons synthesized by a modified sol–gel process for electrosorptive removal of sodium chloride", Carbon, 47, 775-781 (2009).

Lim, S. J. and Kim, T. H., "Removal of organic matter and nitrogen in swine wastewater using an integrated ion exchange and bioelectrochemical system", Bioresource Technology, 189, 107-112 (2015).

Lima, R. M. G., da Silva Wildhagen, G. R., da Cunha, J. W. S. D. and Afonso, J. C., "Removal of ammonium ion from produced waters in petroleum offshore exploitation by a batch single-stage electrolytic process", Journal of Hazardous Materals, 161, 1560-1564 (2009).

Lin, C., Ritter, J. A. and Popov, B. N., "Correlation of Double-Layer Capacitance with the Pore Structure of Sol-Gel Derived Carbon Xerogels", Journal of The Electrochemical Society, 146, 3639-3643 (1999).

Mona, M. B., Bertrand, S. and Peña, O., "Synthesis and characterization of Zn1−xNixFe2O4 spinels prepared by a citrate precursor", Journal of Solid State Chemistry, 178, 1080-1086 (2005).

Mossad, M. and Zou, L., "Evaluation of the salt removal efficiency of capacitive deionisation: Kinetics, isotherms and thermodynamics", Chemical Engineering Journal, 223, 704-713 (2013).
Mossad, M. and Zou, L., "A study of the capacitive deionisation performance under various operational conditions", Journal of hazardous materials, 213-214, 491-497 (2012).

Murphy, G. W. and Caudle, D. D., "Mathematical theory of electrochemical demineralization in flowing systems", Electrochimica Acta, 12, 1655-1664 (1967).

Oren, Y., "Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review)", Desalination, 228, 10-29 (2008).

Rasines, G., Lavela, P., Macías, C., Haro, M., Ania, C. O. and Tirado, J. L., "Electrochemical response of carbon aerogel electrodes in saline water", Journal of Electroanalytical Chemistry, 671, 92-98 (2012).

Salitra, G., Soffer, A., Eliad, L., Cohen, Y. and Aurbach, D., "Carbon electrodes for double-layer capacitors I. relations between ion and pore dimensions", Journal of The Electrochemical Society, 147, 2486-2493 (2000).

Seo, S. J., Jeon, H., Lee, J. K., Kim, G. Y., Park, D., Nojima, H., Lee, J. and Moon, S. H., "Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications", Water research, 44, 2267-2275 (2010).

Shi, H., "Activated carbons and double layer capacitance", Electrochimica Acta, 41, 1633–1639 (1996).

Simon, P. and Gogotsi, Y., "Capacitive energy storage in nanostructured carbon–electrolyte systems", Accounts of chemical research, 46, 1094–1103 (2011).

Tang, W., Kovalsky, P., He, D. and Waite, T. D., "Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization", Water research, 84, 342-349 (2015).


Thurston, R. V., Russo, R. C. and Vinogradov, G. A., "Ammonia toxicity to fishes. effect of pH on the toxicity of the unionized ammonia species", Environmental Science Technology, 15, 837-840. (1981).

Tuan, T. N., Chung, S., Lee, J. K. and Lee, J., "Improvement of water softening efficiency in capacitive deionization by ultra purification process of reduced graphene oxide", Current Applied Physics, 15, 1397-1401 (2015).

Wang, J., Angnes, L., Tobias, H., Roesner, R. A., Hong, K. C., Glass, R. S., Kong, F. M. and Pekala, R. W., "Carbon aerogel composite electrodes", Analytical Chemistry, 65, 2300–2303 (1993).

Wang, Y., Zhang, L., Wu, Y., Xu, S. and Wang, J., "Polypyrrole/carbon nanotube composites as cathode material for performance enhancing of capacitive deionization technology", Desalination, 354, 62-67 (2014).

Xu, P., Drewes, J. E., Heil, D. and Wang, G., "Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology", Water research, 42, 2605-2617 (2008).

Xu, X., Pan, L., Liu, Y., Lu, T. and Sun, Z., "Enhanced capacitive deionization performance of graphene by nitrogen doping", Journal of colloid and interface science, 445, 143-150 (2015).

Yang, K. L., Ying, T. Y., Yiacoumi, S., Tsouris, C. and Vittoratos, E. S., "Electrosorption of ions from aqueous solutions by carbon aerogel: an electrical double-layer model", Langmuir, 17, 1961-1969 (2001).

Zhan, G., Zhang, L., Li, D., Su, W., Tao, Y. and Qian, J., "Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell", Bioresource technology, 116, 271-277 (2012).

Zhang, L. L. and Zhao, X. S., "Carbon-based materials as supercapacitor electrodes", Chemical Society Reviews, 38, 2520-2531 (2009).


王凱平,「奈米孔洞碳電極之孔洞結構與電化學電容之相關性研究」,碩士論文,國立成功大學化學工程學系,台南,2005

古明祥,「金屬添加物對碳系超級電容器特性之影響」,碩士論文,大同大學材料工程研究所,台北,2007

李岳青,「利用碳氣凝膠紙對硝酸進行電容去離子之研究」,碩士論文,國立中央大學,桃園,2015

林家驊,「添加Cu/La/Ce觸媒於濕式氧化程序處理含氨水溶液之研究」,碩士論文,國立中山大學環境工程研究所,高雄,2002

林志高,「新穎厭氧氨氧化技術發展及應用」,國立交通大學環境工程研究所,新竹,2011

陳琪婷,「以二氧化錳催化降解水中氨氮之研究」,碩士論文,國立中山大學海洋環境及工程學系,高雄,2003

曾思嘉,「以電容去離子技術移除水中砷之機制研究」,中華民國環境工程學會2015廢水處理技術研討會,2015

黃承業,「以電容去離子技術去除無機鹽類之電吸附行為研究」,碩士論文,東海大學環境科學與工程學系,台中,2012

黃仁宗、錢中明,「電吸附技術運用於廢水回收再利用:除鹽與COD」,中華民國環境工程學會2010廢水處理技術研討會,2010

黃詩晴,「製備多壁奈米碳管/幾丁聚醣複合式電極以電吸附方式移除苯胺之研究」,碩士論文,東海大學環境工程研究所,台中,2014

熊楚強,「電化學」,新文京開發出版股份有限公司,2004

劉曉萍,「利用簡單合成方法所得氨氮化鈦的濾膜做為超級電容器的應用上」,碩士論文,國立清華大學材料科學與工程學系,新竹,2012

鄭喬薇,「碳氣凝膠電容吸附水中重金屬」,碩士論文,國立中央大學環境工程所,中壢,2007

謝明宏,「二氧化鈦修飾中孔洞分子篩之合成、結構特性與光催化反應」,碩士論文,國立中央大學化學學系,桃園,2009

環保署,「事業廢水水質特性分析及污染管制措施研議計畫」,2013

環保署,「產業廢水污染調查及管制措施研議計畫」,2010
指導教授 秦靜如 審核日期 2016-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明