博碩士論文 942206006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:144 、訪客IP:3.144.96.159
姓名 謝舒菁(Shu-Ching Hsieh)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 同軸式體積全像儲存系統之研究與改良
(The study of collinear holographic storage system)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們以相位疊加法為基礎,建立出一個同軸式體積全像儲存系統的理論模型,並且已求得其在真實空間中的近軸近似解。根據理論計算,證實本模型確實可掌握其具有微小的位移容忍度以及參考光分布對於繞射光分布的影響。此外,其他各項參數對系統特性之影響,包括參考光圖形的對稱性、紀錄介質之厚度、訊號光位置差異及加入相位調制的改良等皆進行探討。最後我們分析不同狀況下之系統的誤碼率及訊雜比,以做為光儲存效能之評估。
摘要(英) In this thesis, we build up a new theoretical model for the collinear holographic storage system based on VOHIL model. Besides, we obtain a formula under the paraxial condition to describe diffraction behavior of the system. According to our simulation, we can figure out the detailed diffraction properties of the system, including large shift selectivity and the effect on the diffraction pattern by the reference pattern. In addition, the diffraction characteristics are studied with several important parameters, including the spatial symmetry of the reference pattern, the thickness of the recording medium, the position-dependence of the signal and phase modulation. Finally, we analyze the performance of the storage system by calculating the bit error rate and signal-to-noise ratio.
關鍵字(中) ★ 全像儲存
★ 全像
關鍵字(英) ★ holography data storage
★ holography
論文目次 摘要 Ⅰ
目錄 Ⅲ
圖目錄 Ⅴ
表目錄 Ⅷ
第一章 緒論 1
1-1 引言 1
1-2 全像儲存技術簡介 4
1-3 論文大綱 6
第二章 體積全像與其繞射效率 7
2-1 布拉格條件 8
2-1-1 參考光調變造成的繞射光能量擴散 10
2-2 耦合波理論 12
2-3 相位疊加法 23
第三章 同軸式體積全像光碟儲存系統分析 27
3-1 同軸式全像光碟紀錄架構 27
3-2 系統理論模型 30
3-3 公式推導 32
3-4 理論模擬與取樣點分析 38
3-4-1 點光源擴散響應 38
3-4-2 位移選擇性 40
3-5 結論 42
第四章 模擬分析與系統改良 43
4-1 點光源擴散響應 43
4-1-1 改變參考光圖形分布 43
4-1-2 改變儲存介質厚度 52
4-2 位移選擇性分析 53
4-2-1 改變參考光圖形分布 53
4-2-2 改變儲存介質厚度 59
4-3 利用特殊形狀透鏡改良架構與其光學特性分析 60
4-3-1 透鏡參數 60
4-3-2 系統點光源擴散響應 61
4-3-3 位移選擇性分析 63
4-4 點光源擴散響應之位移變量 64
4-4-1 軸向線段圓環未加透鏡 65
4-4-2 軸向線段圓環加上環狀透鏡 66
4-4-3 以非對稱之漩渦狀圖形為參考光 68
4-5 點光源擴散響應之位移不變範圍 71
4-6 結論 72
第五章 空間調制器為訊號光與其誤碼率分析 74
5-1 以空間光調製器做為訊號輸入之模型 74
5-2 誤碼率介紹 75
5-3 以空間調制器為訊號光之模擬與誤碼率評估 78
5-3-1 單頁串音效應 79
5-3-2 多頁串音效應 84
5-4 系統畫素響應之位移變量與誤碼率評估 90
5-5 結論 93
第六章 結論 95
參考資料 96
附錄A 99
中英文名詞對照 101
參考文獻 [1] J. W. Goodman, Introduction to Fourier Optics, 2nd eds. (McGraw-Hill, New York, 2002).
[2] H. Coufal, and G.W. Burr, “Optical data storage,” Chapter 26, International Trends in Applied Optics, ed., A. Guenther, SPIE, 2002.
[3] G. W. Burr, “Holographic storage,” Encyclopedia of Optical Engineering, ed., R. B. Johnson and R. G. Driggers, Marcel Dekker, New York, 2003.
[4] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, (Springer, New York, 2000).
[5] Hesselink, L., Orlov, S.S., Bashaw, M.C. “Holographic data storage systems,” inProc. of IEEE 29 1231 – 1280 (2004).
[6] D. Ganor, “A new Microscopic principle,” Nature, 161, 777 (1948).
[7] P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt., 2, 393-400 (1963).
[8] B. L. Booth, "Photopolymer material for holography," Appl. Opt.14, 593-601 (1975).
[9] A. Pu and D. Psaltis, "High-density recording in photopolymer-based holographicthree-dimensional disks," Appl. Opt. 35, 2389- 2398 (1996).
[10] K. Curtis, A. Pu, and D. Psaltis, "Method for holographic storage using peristrophic multiplexing," Opt. Lett. 19, 993-994 (1994).
[11] S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, "High-Transfer-Rate High-Capacity Holographic Disk Data-Storage System," Appl. Opt. 43, 4902-4914 (2004).
[12] H. Horimai, and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt., 45, 910-914 (2006).
[13] H. Horimai and J. Li, "A novel collinear optical setup for holographic data storage system," in Optical Data Storage 2004, B. V. K. Vijaya Kumar and H. Kobori, eds., Proc. SPIE 5380, 297-303 (2004).
[14] H. Horimai, X. Tan, and J. Li, "Collinear holography," Appl. Opt. 44, 2575-2579 (2005).
[15] H. Horimai, and Y. Aoki, “Holographic Versatile Disc (HVD),” in International Symposium on Optical Memory and Optical Data Storage, OSA Technical Digest Series (Optical Society of America, 2005), paper ThE6.
[16] H. Horimai, and X. Tan, “Advanced Collinear Holography,” Opt. Rev. 12, 90-92 (2005).
[17] H. Horimai, and X. Tan, “Holographic Versatile Disc System,” in SPIE Symposium on Optics & Photonics 2005, Organic Holographic Materials and Applications Ⅲ (San Diego, California, USA, 2005), Klaus Meerholz eds., Proceedings of SPIE 5939, 1-9 (2005).
[18] H. Horimai and X. Tank, “Read-only holographic versatile disc system using laser Read-only holographic versatile disc system using laser diode,” Proc. of SPIE 6252, 62520Z-1- 62520Z-5 (2006).
[19] T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, "Analysis of a collinear holographic storage system: introduction of pixel spread function," Opt. Lett. 31, 1208-1210 (2006).
[20] T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai," Calculation of the Pixel Spread Function with a Simple Numerical Model for the Collinear Holographic Storage System," in International Symposium on Optical Memory and Optical Data Storage, OSA Technical Digest Series (Optical Society of America, 2005), paper PD6.
[21] T. Shimura, Y. Ashizuka, M. Terada, R. Fujimura, and K. Kuroda, " What Limits the Storage Density of the Collinear Holographic Memory?," in Optical Data Storage, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper TuD1.
[22] J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM journal of research and development, 44, 341 (2000).
[23] G. Barbastathis and D. J. Brady, “Multidimensional Tomographic Imaging Using Volume Holography,” Proc. of IEEE 87, 2098 – 2120 (1999).
[24] G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter, ” Opt. Lett. 24, 811-813 (1999).
[25] 吳啟守,“光折變體積全像術之波長多工於高密度分波多工器之應用,”中原大學應用物理研究所碩士論文,中華民國九十年。
[26] A. Chiou, P. Yeh, C. Yang, and C. Gu, “Photorefractive Coupler for Fault-Tolerant Coupling,” IEEE Photon. Techno. Lett. 7, 789-791 (1995).
[27] A. Chiou, P. Yeh, C. Yang, and C. Gu, “Photorefractive spatial mode converter for multimode-to-single-mode fiber-optic coupling,” Opt. Lett. 20, 1125-1127 (1995).
[28] E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, "Holographic data storage in three-dimensional media," Appl. Opt. 5, 1303-1311 (1966).
[29] G. W. Burr, F. H. Mok, and D. Psalts, “Angle and space multiplexed storage using the 90∘geometry,” Opt. Commun., 117, 49-55 (1995).
[30] G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume hologram,” Opt. Lett. 17, 1471-1473 (1992).
[31] S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F. T. S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tnable diode-laser,” Opt. Commun, 101, 317-321 (1993).
[32] G. Barbastathis, M. Levene, and D. Psaltis, "Shift multiplexing with spherical reference waves," Appl. Opt. 35, 2403- (1996).
[33] W. C. Su, Y. W. Chen, C. C. Sun, and Y. Ouyang, “Multi-layer storage of a shift-multiplexed holographic disc,” Opt. Eng. 42, 1528-1529 (2003).
[34] C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[35] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
[36] C. C. Sun, W. C. Su, B. Wang, and Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67-74 (2000).
[37] C. C. Sun and W. C. Su, “Three-Dimensional Shifting Selectivity of Random Phase Encoding in Volume Holograms,” Appl. Opt. 40, 1253-1260 (2001).
[38] H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).
[39] A. Yariv, and P. Yeh, Optical Waves in Crystals, (John Wiley & Sons, New York, 1984).
[40] C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184-1185 (2003).
[41] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, “Volume Diffraction Caculations Using the k-sphere Formulation”, in Holographic data storage, (Springer, New York, 2000), pp 42-47.
[42] 蘇威佳,三維亂相編碼之體積全像及其應用,國立中央大學光電科學研究所博士論文, 中華民國九十年。
[43] 陳政憲,無畫素串音之體積全像光儲存碟片之研究,國立中央大學光電所碩士論文,中華民國九十四年。
[44] 蔡孟芬,同軸式體積全像光碟儲存系統之研究,國立中央大學光電所碩士論文,中華民國九十五年。
[45] Robert J. Collier, Christoph B. Burckhardt, Lawrence H Lin, Optical Holography, (Murray Hill, New Jersey, 1983).
[46] Members of the Technical Staff, Bell Laboratories, Transmission Systems for Communications (Bell Laboratories, Holmdel, N. J., 1971), Chap. 30, p.726.
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2007-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明