參考文獻 |
1. K. C. Hadley, and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt. 7, 291-299 (2002).
2. C. Chou, C. Y. Han, W. C. Kuo, Y. C. Huang, C. M. Feng, and J. C. Shyu, “Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter,” Appl. Opt. 37, 3553-3557 (1998).
3. C. Chou, Y. C. Huang, C. M. Feng, and M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys. 36, 356-359 (1997).
4. D. C. Klonoff, “Noninvasive blood glucose monitoring,” Diabetes Care 20, 433-437 (1997).
5. K. J. Jeon, I. D. Hwang, S. Hahn, and G. Yoon, “Comparison between transmittance and reflectance measurements in glucose determination using near infrared spectroscopy,” J. Biomed. Opt. 11, 014022 (2006).
6. Y. J. Kim, and G. Yoon, “Prediction of glucose in whole blood by near-infrared spectroscopy: Influence of wavelength region, preprocessing, and hemoglobin concentration,” J. Biomed. Opt. 11, 041128 (2006).
7. A. K. Amerov, J. Chen, G. W. Small, and M. A. Arnold, “Scattering and absorption effects in the determination of glucose in whole blood by near-infrared spectroscopy,” Anal. Chem. 77, 4587-4594 (2005).
8. K. Maruo, M. Tsurugi, and M. Tamura, “In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy,” Appl. Spectrosc. 57, 1236-1244 (2003).
9. L. A. Paunescu, A. Michalos, H. C. Jee, U. Wolf, M. Wolf, and E. Gratton, “In vitro correlation between reduced scattering coefficient and hemoglobin concentration of human blood determined by near-infrared spectroscopy,” Proc. SPIE Int. Soc. Opt. Eng. 4250, 319-326 (2001).
10. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlations between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19, 2062-2064 (1994).
11. M. Kohl, M. Essenpreis, and M. Cope, “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Phys. Med. Biol. 40, 1267-1287 (1995).
12. D. A. Boas, M. A. Oleary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: A signal-to-noise analysis,” Appl. Opt. 36, 75-92 (1997).
13. D. G. Papaioannou, G. W. ’t Hooft, S. B. Colak, and J. T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1, 305-310 (1996).
14. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26, 992-994 (2001).
15. K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, ”Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects,” Diabetes Care 25, 2263-2267 (2002).
16. I. Kholodnykh, I. Y. Petrova, M. Motamedi, and R. O. Esenaliev, “Accurate measurement of total attenuation coefficient of thin tissue with optical coherence tomography,” IEEE J. SEL. TOP. Quant 9, 210-221 (2003).
17. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, Massoud Motamedi, and R. O. Esenaliev, ”Optimization of low coherence interferometry for quantitative analysis of tissue optical properties,” Proc. SPIE Int. Soc. Opt. Eng. 4624, 36-46 (2002).
18. K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, ”Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: A pilot study,” Phys. Med. Biol. 48, 1371-1390 (2003).
19. K. V. Larin, T. Akkin, R. O. Esenaliev, M. Motamedi, and T. E. Milner, “Phase-sensitive optical low-coherence reflectometry for the detection of analyte concentrations,” Appl. Opt. 43, 3408-3414 (2004).
20. M. A. Arnold, and G. W. Small, “Noninvasive glucose sensing,” Anal. Chem. 77, 5429-5439 (2005).
21. A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt. 28, 2210-2215 (1989).
22. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. I.
23. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331-2336 (1989).
24. M. Cope, P. van der Zee, M. Essenpreis, S. R. Arridge, and D. T. Delpy, “Data analysis methods for near infrared spectroscopy of tissues: problems in determining the relative cytochrome aa3 concentration,” Proc. SPIE Int. Soc. Opt. Eng. 1431, 251-263 (1991).
25. D. A. Benaron and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463-1466 (1993).
26. B. J. Tromberg, L. O. Svaasand, T. T. Tsay, and R. C. Haskell, “Propeties of photon density waves in multiple-scattering media,” Appl. Opt. 32, 607-616 (1993).
27. J. B. Fishkin, and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127-140 (1993).
28. D. A. Boas, M. A. O’leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: Analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91 4887-4891 (1994).
29. F. F. Jobsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264-1266 (1977).
30. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several of published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54 (1995).
31. Yi-Hsin Chan, Chien Chou, Jheng-Syong Wu, Hsiu-Fong Chang, and Hon-Fai Yau, “Properties of a diffused photon-pair density wave in a multiple-scattering medium,” Appl. Opt. 44, 1416-1425, (2005).
32. H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, and R. P. Mason, “Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy,” Appl. Opt. 39, 5231-5243, (2000).
33. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: light emitting diode based technique,” Appl. Opt. 33, 5204-5213 (1994).
34. B. Beauvoit, T. Kitai, and B. Chance, “Contribution of the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach,” Biophys. J. 67, 2501-2510 (1994).
35. M. Kohl, M. Cope, Ma. Essenpreis, and D. Bocker, “Influence of glucose concentration on light scattering in tissue-simulating phantoms,” Opt. Lett. 19, 2170-2172 (1994).
36. L. Heinemann, and G. Schmelzeisen-Redeker, “Non-invasive continuous glucose monitoring in Type I diabetic patients with optical glucose sensors,” Diabetologia 41, 848-854 (1998).
37. H. J. Vanstaveren, C. J. M. Moes, J. Vanmarle, S. A. Prahl, and M. J. C. Vangemert, “Light-Scattering in Intralipid-10-Percent in the Wavelength Range of 400-1100 Nm,” Appl. Opt. 30, 4507-4514 (1991).
38. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510 (1992).
39. S. Jacques, “Optical properties of "IntralipidTM", an aqueous suspension of lipid droplets,” http://omlc.ogi.edu/spectra/intralipid/
40. S. Prahl, “Optical absorption of methylene blue,” http://omlc.ogi.edu/spectra/mb/
41. R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F .M. Demul, J. Greve, and M.H. Koelink, “Reduced Light-Scattering Properties for Mixtures of Spherical-Particles - A Simple Approximation Derived from Mie Calculations,” Appl. Opt. 31, 1370-1376 (1992).
42. L. Heinemann, U. Kramer, et al., “Noninvasive Glucose Measurement by Monitoring of Scattering Coefficient During Oral Glucose Tolerance Tests,” Diabetes Technology & Therapeutics 2, 211-220 (2000).
43. B. Chance, H. Liu, T. Kitai, and Y. Zhang, “Effects of solutes on optical properties of biological materials: Models, cells, and tissues,” Anal. Biochem. 227, 351-362 (1995).
44. J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, “Collagen solubility correlates with skin optical clearing,” J. Biomed. Opt. 11, 040501 (2006).
45. B. Choi, L. Tsu, E. Chen, T. S. Ishak, S. M. Iskandar, S. Chess, and J. S. Nelson, “Determination of chemical agent optical clearing potential using in vitro human skin,” Lasers Surg. Med. 36, 72-75 (2005).
46. A. T. Yeh, and J. Hirshburg, “Molecular interactions of exogenous chemical agents with collagen - implications for tissue optical clearing,” J. Biomed. Opt. 11, 014003 (2006).
47. O. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, and A. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24, 133-141 (1999).
48. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982-1989 (1998).
49. K. J. Jeon, I. D. Hwang, S. Hahn, and G. Yoon, “Comparison between transmittance and reflectance measurements in glucose determination using near infrared spectroscopy,” J. Biomed. Opt. 11, 014022 (2006).
50. K. Yamakoshi, and Y. Yamakoshi, “Pulse glucometry: a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry,” J. Biomed. Opt. 11, 054028 (2006).
51. R. Liu, W. L. Chen, X. Y. Gu, R. K. K. Wang, and K. X. Xu, “Chance correlation in non-invasive glucose measurement using near-infrared spectroscopy,” J. Phys. D Appl. Phys. 38, 2675-2681 (2005).
52. W. Nahm, and H. Gehring, “Noninvasive In-Vivo Measurement of Blood Spectrum by Time-Resolved Near-Infrared Spectroscopy,” Sensor Actuat. B-Chem. 29, 174-179 (1995). |