博碩士論文 942206050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.142.55.105
姓名 何信穎(Hsin-ying Ho)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 白光LED之YAG螢光粉光學模型之研究
(The study of optical modeling of YAG phosphor for white light LED)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,為了探討螢光粉於白光LED封裝之光學特性及建立準確的光學模型,我們結合蒙地卡羅(Monte-Carlo)光追跡法及米氏散射(Mie scatter)原理模擬光線於螢光粉膠體中傳遞時所造成的體散射效應。在模型中我們紀錄藍光被螢光粉所吸收的空間分佈,為螢光粉激發之黃光分佈光源。藉由藍光與黃光兩次光追跡來描述白光LED之光學行為。由實驗與模擬之驗證與分析,我們成功地建立等效YAG螢光粉之光學模型,並應用於白光LED封裝之分析,可對於自行設計之LED封裝找出最佳化結果,模擬分析其出光能量,光萃取效率,及LED於三度空間中之色溫分佈。
摘要(英) In this thesis, in order to probe into phosphor powder in the optics characteristic of white light LED encapsulation and set up accurate optics model, we combine Monte-Carlo method and volume Mie scattering effect to simulate light transmit in phosphor powder, and record of the space distribution of photon absorbed; it is the new light source that be exciting phosphor, and the optics behavior described the white light LED by blue and yellow two times of light tracing. With the verification of the experiment and simulation, we succeed in setting up the optics model of equivalent YAG phosphor, and apply to the analysis of white light LED encapsulation, can find out the optimization result to the LED encapsulation that is designed by oneself, simulation is analysed all energy happens in it, extract efficiency, and the correlate colour temperature distributed in three-dimensional space.
關鍵字(中) ★ 光學模型
★ 螢光粉
關鍵字(英) ★ YAG phosphor
★ optical modeling
論文目次 摘要 I
英文摘要 II
誌謝 III
圖目錄 VI
表目錄 XII
第一章 緒論 1
1.1 LED背景 1
1.2 研究動機與目的 3
1.3 論文大綱 4
第二章 基本原理 5
2.1 引言 5
2.2 LED發光原理 5
2.3 螢光粉發光原理 6
2.4 LED能量轉換過程與效率 9
2.5 混光原理 11
第三章 螢光粉模型之建立與驗證 12
3.1 引言 12
3.2 螢光粉散射行為 13
3.3 螢光粉吸收參數 26
3.4 螢光粉轉換效率 36
3.5 螢光粉模型之驗證與分析 38
第四章 螢光粉模型之應用與分析 44
4.1 引言 44
4.2 散射驗證 44
4.3 封裝位置 48
4.4 碗杯材質 66
第五章 結論 70
參考文獻 71
中英文名詞對照表 76
參考文獻 [1] A. Zukauskas, M. S. Schur, and R. Gaska, Introduction to Solid-State Lighting (Wiley-Interscience, New York, 2002).
[2] S. Nakamura, and G. Fasol, The Blue Laser Diode: GaN based light emitters and lasers (Spinger, Berlin, 1997).
[3] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925, Dec. 7, 1999.
[4] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
[5] S . T. Flock, B. C. Wilson, and M. S . Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm.” Med. Phys. 14, 835-841 (1987).
[6] L. G. Henyey and J . L. Greenstein, “Diffuse radiation in the galaxy,” Asrrophys. J . 93, 70-83 (1941).
[7] Optoelectronics Industry Development Association (OIDA). Light emitting diodes (LEDs) for general illumination: An OIDA technology roadmap update 2002. Optoelectronics Industry Development Assn., Washington DC, 2002.
[8] T.F. McNulty et al., “UV reflector and UV-based Light Source Having Reduced UV Radiation Leakage Incorporating The Same,” United States Patent, Us 6686676 B2, Feb. 3, 2004.
[9] A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur and R. Gaska, “Optimization of mulitichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148 (2001).
[10] Stelur et al., “Phosphor Blends for Generating White Light from Near-UV/Blue Light-Emitting Devices,” United States Patent, US 6685852 B2, Feb. 3, 2004.
[11] Duclos et al., “Phosphor Coating with Self-adjusting Distance from LED Chip,” United States Patent, US 6635363 B1, Oct. 21, 2003.
[12] 劉如熹,王健源,白光發光二極體製作技術 (全華科技圖書公司,2005)。
[13] Mehmet, C. Becker, S. Weaver, and J. Petroski, “Thermal Management of LEDs: Package to System,” Proc. SPIE 5187, 64 (2004).
[14] M. Arik, S. Weaver, C. Becker, M. Hsing, and A. Srivastava, “Effects of localized heat generations due to the color conversion in phosphor particles and layers of high brightness light emitting diodes,” Presented at ASME/IEEE Int. Electronic Packaging Technical Conf. and Exhibition—InterPACK'03, July 6–11, 2003.
[15] N. Narendran, “Improved performance white LED,” Proc. SPIE 5941, 45-50 (2005).
[16] N. R. Taskar, R. N. Bhargava, J. Barone, V. Chhabra, V. Chabra, D. Dorman, A. Ekimov, S. Herko, and B. Kulkarni, “Quantum-confined-atom-based nanophosphors for solid state lighting,” Proc. SPIE 5187, 133-141 (2004).
[17] R. Mueller-Mach, G. Mueller, M. Krames, and T. Trottier, “High-power Phosphor-converted Light-Emitting Diodes Based on III- Nitrides,” IEEE J. Sel. Topics Quantum Electron. (2002) ,pp. 339-345.
[18] R. Mueller-Mach, G. O. Mueller, and M. R. Krames, “Phosphor materials and combinations for illumination-grade white pcLEDs,” Proc. SPIE 5187, 115-122 (2004).
[19] Breault Research Organization, http://www.breault.com/.
[20] S. J. Lee, “Analysis of light-emitting diodes by Monte-Carlo photon simulation,” Appl. Opt. 40, 1427-1437 (2001).
[21] C. F. Boren and D. R. Huffmarn, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
[22] S . T. Flock, B. C. Wilson, and M. S . Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm.” Med. Phys., 14, 835-841 (1987).
[23] M. Igarashi, K. Gono, T. Obi, M. Yamaguchi, and N. Ohyama, “Simulation of spectral reflectance of multiple scattering medium using the Mie theory combined with the Monte Carlo method,” Proc. SPIE 4955, 305-313 (2003).
[24] D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270-3274 (1996).
[25] GEMSTONE, http://socrates.berkeley.edu/~eps2/wisc/ri.html.
[26] J. -P. Chevaillier, J. Fabre, and P. Hamelin, “Forward scattered light intensities by a sphere located anywhere in a Gaussian beam,” Appl. Opt. 25, 1222-1225 (1986).
[27] A. Doicu, and T. Wriedt, “Equivalent refractive index of a sphere with multiple spherical inclusions,” Journal of Optics A: Pure and Applied Optics. 3, 204-209 (2001).
[28] Q. Fu, W. B. Sun, and P. Yang, “Modeling of Scattering and Absorption by Nonspherical Cirrus Ice Particles at Thermal Infrared Wavelengths,” J. Atmos. Sci. 56, 2937–2947 (1999).
[29] P. Yang, B. A. Baum, A. J. Heymsfield, Y. X. Hu, H. Huang, S. Tsay and S. Ackerman, “Single-scattering properties of droxtals,” J. Quant. Spectrosc. Radiat. Transfer. 79-80, 1159-1169 (2003).
[30] M. Mikrenska, P. Koulev, J.-B. Renard, E. Hadamcik and J.-C. Worms, “Direct simulation Monte Carlo ray tracing model of light scattering by a class of real particles and comparison with PROGRA2 experimental results,” J. Quant. Spectrosc. Radiat. Transfer. 100, 256-267 (2006).
[31] P. Yang, H. Wei, H. -L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512-5523 (2005).
[32] C. C. Chang, R. Chern, C. C. Chang, C. Chu, J. Y. Chi, J. Su, I-Min Chan and J. T. Wang, “Monte Carlo Simulation of Optical Properties of Phosphor-Screened Ultraviolet Light in a White Light-Emitting Device,” Jpn. J. Appl. Phys. 44, 6056-6061 (2005).
[33] M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” Journal of Histochemistry and Cytochemistry. 27, 250-263 (1979).
[34] Q. Fu and W. Sun, “Mie Theory for Light Scattering by a Spherical Particle in an Absorbing Medium,” Appl. Opt. 40, 1354-1361 (2001).
[35] I. W. Sudiarta and P. Chylek, “Mie-scattering formalism for spherical particles embedded in an absorbing medium,” J. Opt. Soc. Am. A 18, 1275-1278 (2001).
[36] P. Chýlek, “Light scattering by small particles in an absorbing medium,” J. Opt. Soc. Am. 67, 561-563 (1977).
[37] Á. Borbély and S. G. Johnson, “Performance of phosphor-coated light-emitting diode optics in ray-trace simulations,” Opt. Eng. 44, 111308 (2005).
[38] Á. Borbély and S. G. Johnson, “Performance of phosphor-coated LED optics in ray trace simulations,” Proc. SPIE 5530, 266-273 (2004).
[39] D. L. MacAdam, Spectrophotometry in Color Measurement, (Springer-Verlag, 1981), pp. 36-45.
[40] F. Hu, K. -Y. Qian, and Y. Luo, “Far-field pattern simulation of flip-chip bonded power light-emitting diodes by a Monte Carlo photon-tracing method,” Appl. Opt. 44, 2768-2771 (2005).
[41] Á. Borbély and S. G. Johnson, “Prediction of light extraction efficiency of LEDs by ray trace simulation,” Proc. SPIE 5187, 301-308 (2004).
[42] C. C. Sun, T. -X. Lee, S. -H. Ma, Y. -L. Lee, and S. -M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
[43] C. S. McCamy , “Correlated color temperature as an explicit function of chromaticity coordinates ,” Color Res. Appl. 17, 142-144 (1992).
[44] J. Hernandez-Andres, R. L. Lee, and J. Romero, “Calculating Correlated Color Temperatures Across the Entire Gamut of Daylight and Skylight Chromaticities,” Appl. Opt. 38, 5703-5709 (1999).
[45] D. Kang, E. Wu, and D. Wang,“Modeling white light-emitting diodes with phosphor layers,” Appl. Phys. Lett. 89, 231102 (2006).
[46] N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting Phosphor-Scattered Photons to Improve White LED Efficiency,” Phys. Status Solidi A, 202 R60–R62 (2005).
[47] M. Hammer, A. Roggan, D. Schweitzer, G. Muller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol. 40, 963-978 (1995).
[48] K. Yamada, Y. Imai and K. Ishii, “Optical Simulation of Light Source Devices Composed of Blue LEDs and YAG Phosphor,” J. Light & Vis. Env. 27, 70-74 (2003).
[49] J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone and Y. Park, “Strongly Enhanced Phosphor Efficiency in GaInN White Light-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup,” Jap. J. Appl. Phys. 44, L649-L651 (2005).
[50] H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes,” Appl. Phys. Lett. 86, 243505 (2005).
[51] H. Luo, J. K. Kim, Y. Xi, J. Cho, C. Sone, Y. Park, and E. F. Schubert, “High-power packages for phosphor-based white-light-emitting diode lamps,” Semiconductor Device Research Symposium, 2005 International, Dec. 7-9, 2005, pp. 91- 92.
[52] H. Luo, J. K. Kim, Y. A. Xi, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Trapped whispering-gallery optical modes in white light-emitting diode lamps with remote phosphor,” Appl. Phys. Lett. 89, 041125 (2006).
[53] Y. Zhu, N. Narendran, and Y. Gu, “Investigation of the optical properties of YAG:Ce phosphor,” Proc. SPIE 6337, 63370S (2006).
指導教授 孫慶成(Ching-cherng Sun) 審核日期 2008-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明