博碩士論文 942206051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.144.86.153
姓名 林哲巨(Che-Chu Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用光導管提升縱向位移靈敏度之研究
(Improving the longitudinal shifting selectivity by introducing a light pipe)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文主要目的在於研究體積全像位移多工之位移靈敏度,吾人提出一新穎的90度紀錄架構,以訊號光為平面波,參考光為球面波,在參考光光路上置入導光管(Light pipe),進行一系列實驗,並藉由相位疊加法(Volume hologram being an integrator of the lights emitted from elementary light source,簡稱VOHIL)理論的分析,與實驗結果做驗證。於此一研究中吾人發現,光折變晶體在接收同樣數值孔徑(Numerical aperture)的參考光下,可提高體積全像之縱向位移靈敏度。
此外,於實驗過程中,我們遇到電動平移台位移不精確、齒輪間隙所產生的實驗誤差,以及實驗歸一化的問題,因此我們亦同時針對這些問題設計一套實驗步驟與分析方法,以得到精確的測量數據。
相信此一研究對於探討光學儲存的儲存容量,以及利用全像晶體進行共焦顯微鏡解析度之提昇等研究,必能有所助益。
摘要(英) In this thesis, we study the longitudinal selectivity of volume holographic optical elements. We propose a 90-degree geometry with inserting a light pipe in the reference arm. According to the analysis by VOHIL model and experimental demonstration, we find that the light pipe is useful to enhance longitudinal selectivity of the volume holographic optical element. The enhancement of the longitudinal selectivity can be applied to enhance multiplexing capacity of volume holographic storage and to increase resolution of confocal microscope
based on volume holographic filter.
關鍵字(中) ★ 全像
★ 縱向位移靈敏度研究
關鍵字(英) ★ longitudinal selectivity
★ light pipe
★ holography
論文目次 In this thesis, we study the longitudinal selectivity of volume holographic optical elements. We propose a 90-degree geometry with inserting a light pipe in the reference arm. According to the analysis by VOHIL model and experimental demonstration, we find that the light pipe is useful to enhance longitudinal selectivity of the volume holographic optical element. The enhancement of the longitudinal selectivity can be applied to enhance multiplexing capacity of volume holographic storage and to increase resolution of confocal microscope
based on volume holographic filter.
目錄
致謝 i
摘要 iv
Abstract v
目錄 vi
圖目錄 vii
表目錄 ix
第一章 導論 1
1-1 本文緣起 1
1-2 論文大綱 2
第二章 體積全像與光折變效應 4
2-1 體積全像 4
2-2耦合理論 8
2-3 布拉格條件 13
2-3-1布拉格匹配 15
2-3-2 布拉格不匹配 16
2-4 光折變效應 19
第三章 以球面波為參考光之位移多工 27
3-1 相位疊加法 27
3-2 模擬結果 30
3-3 解析解 30
3-4 實驗 32
3-4-1實驗架構 33
3-4-2實驗步驟及技巧 36
3-5實驗結果 48
第四章 以球面波通過導光管為參考光之實驗 51
4-1 導光管介紹 51
4-2 實驗架構 52
4-3實驗結果 55
4-4導光管之模擬結果 57
第五章 結論 61
附錄A 弧形導光管 62
參考文獻 64
中英文名詞對照表 67
參考文獻 [1] D. Gabor, "A new Microscopic principle," Nature 161, 777 (1948).
[2] R. J. Collier, C. B. Bruckhardt, and L. H. Lin, Optical holography, Academic press, New York (1971).
[3] F. S. Chen, J. T. LaMacchia and D. B. Fraser, "Holographic storage in lithium niobate," Appl. Phys. Lett. 13, 223 (1968).
[4] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, (Springer, New York, 2000).
[5] B. Fischer, M. Cronin-Golomb, J. O. White, and A. Yariv, "Amplified reflection, transmission, and self-os cillation in real-time holography," Opt. Lett. 6, 519- (1981)
[6] H. A. Eggert, F. Kalkum, K. Buse, and B. Sturman, "Bragg selectivity of space-charge gratings in multidomain lithium niobate crystals," Opt. Lett. 31, 1256-1258 (2006)
[7] P. Boffi, D. Piccinin, M. C. Ubaldi, and M. Martinelli, "All-Optical Pattern Recognition for Digital Real-Time Information Processing," Appl. Opt. 42, 4670-4680 (2003)
[8] F. Dubois, F. De Schryver, and B. Biran, "Theoretical study of size effects in volume holograms," J. Opt. Soc. Am. A 8, 270- (1991)
[9] W. C. Su and C. C. Sun, "Optical pattern interconnections using random phase encoding in volume holograms," Opt. Commun. 213, 259-265(2002).
[10] G. Barbastathis, M. Balberg, and D. J. Brady, "Confocal microscopy with a volume holographic filter," Opt. Lett. 24 811-813(1999)
[11] C. C. Sun, W. C. Su, B. Wang, and Y. Ouyang, "Diffraction selectivity of holograms with random phase encording," Opt. Commun. 175, 64-74 (2000).
[12] C. C. Sun, "Simplified model for diffraction analysis of volume holograms," Opt. Eng. 42, 1184-1185 (2003).
[13] E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, "Holographic data storage in three-dimensional media," Appl. Opt., 5, 1303-1311, 1966
[14] C. -C. Sun and W. -C. Su, "Three-Dimensional Shifting Selectivity of Random Phase Encoding in Volume Holograms ," Appl. Opt. 40, 1253-1260 (2001)
[15] S. Yin, P. Purwosumarto, and F. T. S. Yu, "Application of fiber specklegram sensor to fine angular alignment," Opt. Commun. 170, 15–21 (1999).
[16] G. A. Rakuljic, V. Levya, and Yariv, "Optical data storage by using orthogonal wavelength-multiplexed volume holograms," Opt. Lett. 17, 1471-1473 (1992).
[17] S. F. Chen, C. S. Wu, and C. C. Sun, "Design for a High Dense Wavelength Division Multiplexer Based on Volume Holographic Gratings," Opt. Eng. 43, 2028-2033 (2004).
[18] F. Havermeyer, W. Liu, C. Moser, D. Psaltis and G. J. Steckman, "Volume holographic grating-based continuously tunable optical filter," Opt. Eng. 43, 2017-2021 (2004).
[19] A. Sinha, G. Barbastathis, W. Liu, and D. Psaltis, "Imaging using volume holograms," Opt. Eng. 43, 1957 (2004).
[20] W. Liu, G. Barbastathis, and D. Psaltis, "Volume holographic hyperspectral imaging," Appl. Opt. 43, 3581 (2004).
[21] C. C. Sun, T. C. Teng and Y. W. Yu, "One-dimensional Optical Imaging with Volume Holographic Optical Element," Opt. Lett. 30, 1132-1134 (2005).
[22] C. C. Sun, Y. M. Chen, and W. C. Su, "An all-optical fiber sensing system based on random phase encoding and volume holographic interconnection," Opt. Eng. 40, 160-161 (2001).
[23] C. C. Sun, Y. Ouyang, W. C. Su, and E. T. Chiou, "All-optical angular sensing based on holography multiplexing with spherical waves," Opt. Eng. 41, 2809-2813 (2002).
[24] B. Wang, J. Y. Chang, W. C. Su, and C. C. Sun, "Optical security using a random binary phase code in volume holograms," Opt. Eng. 43, 2048-2052 (2004).
[25] T. C. Teng, P. C. Ou, and C. C. Sun, "Volume holographic Optical Elements for Point-to-point Self-focusing with Local Crosstalk," Opt. Lett. 30, 3015-3017 (2005).
[26] C. C. Sun, C. Y. Hsu, W. C. Su, Y. Ouyang, and J. Y. Chang, "A novel algorithm for high sensitivity in measuring surface variation based on volume holography," Micro. Opt. Tech. Lett. 34, 319-321(2002).
[27] Y. Jeong and B. Lee, "Effect of a random pattern through a multimode-fiber bundle on angular and spatial selectivity in volume holograms: experiments and theory," Appl. Opt. 41, 4085-4091 (2002).
[28] S. H. Shin and B. Javidi, "Three-dimensional object recognition by use of a photorefractive processor," Opt. Lett. 26, 1161-1163 (2001).
[29] B. Javidi and E. Tajahuerce, "Three-dimensinal object recognition by use of digital holography," Opt. Eng. 25, 610-612 (2000).
[30] C. C. Sun, C. Y. Hsu, C. H. Wu, and W. C. Su, "Spatial filtering of three-dimensional objects based on volume holography," Opt. Eng. 42, 2788-2789 (2003).
[31] W. R. Klein, "Theoretical Efficiency of Bragg Devices," Proc. IEEE 803-804 (1966).
[32] F. S. Chen, "Optically induced change of refractive indices in LiNbO3 and LiTaO3," J. Appl. Phys. 40, 3389 (1969).
[33] L. Young, W. K. Y. Wing, M. L. W. Thewait and W. D. Crnish, "Theory of formation of phase holograms in lithium niobate," Appl. Phys. Lett. 24, 264 (1974).
[34] G. A. Alphonse, R. C. Alig, O. L. Staebler and W. Phillips, "Time dependent characteristics of photo-induced space charge field and phase holograms in lithium neonate and other photorefractive materials," RCA Review 36, 213 (1975).
[35] D. Vonder Linde and A. M. Glass, "Photorefractive effects for reversible holographic storage of information," J. Appl. Phys. 8, 85 (1975).
[36] D. M. Kim, R. R. Shah, T. A. Rabson and F. K. Tittel, "Nonlinear dynamic theory for photorefractive phase hologram formation," Appl. Phys. Lett. 28, 338 (1976).
[37] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin and V. L. Vinetskii, "Holographic storage in electro-optic crtstals. I. Steady state," Ferroelectrics 22, 949 (1979).
[38] A. Yariv, and P. Yeh, Optical Waves in Crystal, (John Wiley &Sons, New York, 1984).
[39] R. L. Townsend and J. T. LaMachia, "Optical induced refractive index change in BaTiO3," J. Appl. Phys. 4, 5188 (1970).
[40] 林祐年, 體積光柵應用於微物3D掃描之研究 , 國立中央大學光電所碩士論文,中華民國八十九年。
[41] 葉世博, 高位移敏感度之全像多工光學儲存之研究 , 國立中央大學光電所碩士論文,中華民國八十九年。
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2007-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明