博碩士論文 983409001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.190.153.111
姓名 李立偉(Li-Wei Lee)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 含多吡啶有機配子之多孔性金屬有機配位聚合物自組裝合成、結構鑑定與氣體吸附性質研究
(Self-Assembly, Structures, Gas Adsorption and Applications of Porous Metal–Organic Frameworks Constructed from Multi-pyridyl Ligands)
相關論文
★ 鈷、鋅離子與1,2,4,5-苯四酸之自組裝合成結構與性質探討★ 銀離子與5,5'-聯嘧啶自組裝合成、結構與性質研究
★ 銀、錸長方形、三角形分子之自組裝合成, 結構與光物理特性研究★ 鎳、鈷、銅金屬離子與吡啶-羧酸混配子 自組裝合成配位聚合物之研究
★ 三核與四核錸金屬環錯合物之自組裝合成, 結構鑑定與分子辨識研究★ 可溶性含四羧酸-鈷、鎳配位聚合物之自組裝合成與重組
★ 聯咪唑錸錯合物之自組裝合成、結構與性質研究★ 鑭系金屬與1,2,4,5-苯四酸配子之自組裝合成、結構與性質探討
★ 含苯咪唑三芽基之鈷、鋅、鎘金屬配位聚合物之自組裝合成、結構與性質探討★ 含L-硫代脯氨酸配基之手性金屬配位化合物合成、性質量測與結構轉變之探討
★ 含2-氨基-5-硫基-1,3,4-?二唑之金屬配位聚合物之合成、結構解析及介電性質研究★ 鍶金屬有機骨架化合物之介電與光學性質研究與應用
★ 含雙吡啶三唑配子之金屬有機配位聚合物之自組裝、結構鑑定及性質研究★ 含噻吩基配位聚合物之合成,結構與螢光性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文旨為多孔性金屬有機配位聚合物之設計合成、結構分析與性質研究。過渡金屬鹽類與中性含吡啶配基或雙羧酸根配基以自組裝法合成出11個多孔有機金屬配位聚合物,產物結構皆經由紅外線共振光譜、元素分析、熱重分析、單晶X光繞射分析與粉末X光粉末繞射分析等方法鑑定。合成之多孔金屬有機配位聚合物結構多樣,包含一維結構、二維平面結構與三維立體結構。化合物{[Zn2(azpy)(aip)2]·2DMF}n (1)、{[Zn2(dipytz)(aip)2]·DMF·MeOH}n (2)與{[Zn2(tpim)(aip)2]·2.5DMF·2H2O}n (3)皆為二維雙層柱狀結構。化合物{[Zn2(tpim)2(D-cam)2]·10H2O}n (4)和{[Zn2(tpim)2(L-cam)2]·10H2O}n (5) 為二維手性平面結構。化合物{[Cd2(tpim)4(SO4)(H2O)2]·(SO4)·21H2O}n (6)為二維(6,3)磚狀拓樸平面結構。化合物{[Zn(4-abpt)05(3,4-pydc)]·DMAc·1.5MeOH·0.5H2O}n (7)為三維層柱狀結構。化合物{[Zn(4-pimp)(3,4-pydc)]·2DMAc}n (8)和{[Zn2(tpim)(3,4-pydc)2]·4DMF·4H2O}n (9)分別為手性二維平面結構和三維層柱狀結構。化合物[Zn(tpim)(cis-1,4-chdc)]·3H2O (10)為一維單層奈米管狀結構,而化合物[Zn2(tpim)2(trans-1,4-chdc)2]·6H2O (11)為二維層狀結構。
化合物1–11皆為多孔金屬有機配位聚合物。化合物1–3取決於支柱配體的長度和形狀而有不同的孔隙體積和通道形狀,以及在溶劑置換過程中能調控結構中靈活性(1和2)與剛性(3)結構。化合物1–3對二氧化碳的捕捉具有選擇性吸附能力。而另外值得注意的是化合物4與5在接近室溫下對二氧化碳的吸附顯示出少見的柵門開關吸附行為,且在二氧化碳脫附時呈現出寬帶遲滯現象。化合物6是由二種不同鍵結方式的硫酸根陰離子與中性配子所形成的二維層狀結構,對硫氰根離子和疊氮根離子有不同的陰離子交換能力。有趣的是,化合物6之硫酸根離子可被硫氰根離子全部交換而產生結構轉換,而疊氮根離子只有部分取代硫酸根離子。化合物7是具一維蜂窩狀通道的三維層柱狀結構。值得注意的是,以四面體配位環境的鋅金屬中心經由金屬離子交換實驗中能完全被銅離子置換,並觀察到良好的非線性光學特性。化合物8和9皆具有同手性的斜方系空間群P212121。化合物8為二維層狀結構。化合物9是具一維通道的三維層柱狀結構且表現出顯著可逆熱致變色行為。化合物10和11由不同構型的雙羧酸根配基與中性配子經由自組裝反應形成一維單壁奈米管狀結構與二維層狀結構,並觀察到不同的氣體吸附現象。
摘要(英)

In this thesis, a series of porous metal–organic framework (MOFs) were synthesized by reacting rigid multi-pyridyl ligands, various dicarboxylate ligands and d10 metal ions (Zn2+ and Cd2+) under mild reaction conditions. The structures of these compounds range from one dimensional single-walled nanotubes, and two dimensional layers to three dimensional networks. The structure of the compounds {[Zn2(azpy)(aip)2]·2DMF}n (1), {[Zn2(dipytz)(aip)2]·DMF·MeOH}n (2), and {[Zn2(tpim)(aip)2]·2.5DMF·2H2O}n (3) assume a two-dimensional pillared-bilayer framework with 1D channels created inside the bilayers. Compounds {[Zn2(tpim)2(D-cam)2]·10H2O}n (4) and {[Zn2(tpim)2(L-cam)2]·10H2O}n (5) are composed of homochrial two-dimensional layers with a rectangle-like (4,4) topology. Compound {[Cd2(tpim)4(SO4)(H2O)2]·(SO4)·21H2O}n (6) shows a two-dimensional layer structure with a brick-wall-type (6,3) topology. Compound {[Zn(4-abpt)0.5(3,4-pydc)]·DMAc·1.5MeOH·0.5H2O}n (7) features a three-dimensional pillared-layer framework with a (3,4)-connected net. Compound {[Zn(4-pimp)(3,4-pydc)]·2DMAc}n (8) adopts a homochiral two-dimensional layered structure and {[Zn2(tpim)(3,4-pydc)2]·4DMF·4H2O}n (9) displays a homochiral three-dimensional pillared-layer network. Compound [Zn(tpim)(cis-1,4-chdc)]·3H2O (10) displays an independent 1D single-walled metal–organic nanotube and [Zn2(tpim)2(trans-1,4-chdc)2]·6H2O (11) shows a two-dimensional layered structure.
All of the compounds are porous materials with different pore volumes and channel shapes. The pillared-bilayer frameworks of 1–3 have different pore volumes and channel shapes depending on the length and shape of the pillar ligands as well being feasible to tune the structural flexibility (1 and 2) or rigidity (3) through solvent-exchange processes. The resoluting MOFs exhibit a higher selective adsorption of CO2 over H2 and N2. It is noteworthy that the enantiopure compounds 4 and 5 showed an uncommon gate-opening effect on CO2 sorption and displayed a wide hysteresis loop upon desorption under ambient conditions. Compound 6 consists of a 2D layer structure with two types of sulfate anions and exhibits anion exchange capability with SCN− or N3− anions. Interestingly, the anion-exchanged products of 6 with SCN− or N3− are very different. Compound 7 adopted a three-dimensional porous pillared-layer framework with 1D honeycomb channels. Remarkably, the tetrahedral coordination environment of ZnII ions in 7 could be changed by the presence of other transition metal ions in a DMAc solution. Furthermore, compound 7 also displayed significant non-linear optical behavior. Compounds 8 and 9 crystallize in the homochiral orthorhombic space group P212121. Compound 8 adopted a 2D layer structure. Compound 9 showed a 3D pillared-layer framework with the rectangular-shape one-dimensional channels and revealed significant reversible the thermochromic behavior. Compounds 10 and 11 were constructed from the conformationally flexible 1,4-H2chdc (cis- or trans-) and tpim ligands under hydrothermal conditions and displayed different gas adsorption behaviors.
關鍵字(中) ★ 金屬有機配位聚合物 關鍵字(英) ★ Metal–organic frameworks
★ Homochiral
★ Nanotube
★ Pillared-layer
★ Self-assembly
論文目次

摘要i
Abstractiii
誌謝.v
Contentsvi
List of Figures.viii
List of Tables.xiv
Chapter 1 Intrdouction.1
1.1 Supramolecular Chemsitry and Self-Assembly1
1.2 A Brief Introduction of Metal–Organic Frameworks (MOFs).6
1.3 Porous Metal–Organic Frameworks for Gas Adsorption10
1.4 Chiral Metal–Organic Frameworks22
1.5 Reference.27
Chapter 2 Materials and Methods.29
2.1 Instrument29
2.2 Chemical30
2.3 Ligand Syntheses.31
2.4 Experimental Methods.31
2.5 Reference.40
Chapter 3 Pillared-Bilayer Zinc(II)–Organic Laminae: Pore Modification and Selective Gas
Adsorption.41
3.1 Introduction.41
3.2 Experimental Section.42
3.3 Results and Discussion47
3.4 Conclusion.61
3.5 Reference.61
Chapter 4 Temperature-Programing Gate-Opening of CO2 Adsorption under Ambient
Conditions in a Dynamic Zn(II)–Camphorate Frameworks.63
4.1 Introduction.63
4.2 Experimental Section.64
4.3 Results and Discussion67
4.4 Conclusion.78
4.5 Reference.79
Chapter 5 Anion-Induced Structural Transformation of a Sulfate-Incorporated 2D Cd(II)–
Organic Framework.81
5.1 Introduction.81
5.2 Experimental Section.81
5.3 Results and Discussion86
5.4 Conclusion.96
5.5 Reference.96
Chapter 6 Metal-Ion Metathesis in a Pillared-Layer Zinc(II)–Organic Framework99
6.1 Introduction.99
6.2 Experimental Section.100
6.3 Results and Discussion.103
6.4 Conclusion.113
6.5 Reference.113
Chapter 7 Two Homochiral Zinc(II)–Organic Frameworks with (3,4)-Connected Nets Based
on Mixed Ligands: Synthesis, Structures, and Adsorption Properties115
7.1 Introduction.115
7.2 Experimental Section116
7.3 Results and Discussion119
7.4 Conclusion129
7.5 Reference129
Chapter 8 Assembly of two Zinc(II)–Organic Frameworks Based on a Flexible 1,4-
cyclohexanedicarboxylate.131
8.1 Introduction.131
8.2 Experimental Section132
8.3 Results and Discussion135
8.4 Conclusion143
8.5 Reference143
Chapter 9 Conclusion144
參考文獻 1. Lehn, J. M. Nobel lecture 1987.
2. Lehn, J. M. Eur. Rev. 2009, 17, 263.
3. Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives, Wiley-VCH, 1995.
4. Tecilla, P.; Dixon, R. P.; Slobodkin, G.; Alavi, D. S.; Waldeck, D. H.; Hamilton, A. D. J. Am. Chem. Soc. 1990, 112, 9408.
5. Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312.
6. (a) Lindoy, L. F.; Atkinson, I. M. Self-Assembly in Supramolecular Systems; Royal Society of Chemistry: Cambridge, 2000. (b) Antonio, B.; Kristin, B. J.; Enrique, G. E. The Supramolecular Chemistry of Anions; Wiley-VCH: New York, 1997. (c) Steiner T. Angew. Chem. Int. Ed. 2002, 41, 48. (d) Muller, P. Pure & Appl. Chem. 1994, 66, 1077. (e) Christoph, J. J. Chem. Soc., Dalton Trans. 2000, 3885.
7. Falcaro, P.; Ricco, R. Doherty, C. M.; Liang, K.; Hill, A. J.; Styles, M. J. Chem. Soc. Rev. 2014, 43, 5513.
8. ISI Web of Science, research performed during April 2014 using the following key words: Metal–Organic Framework (orange), Metal–Organic Framework AND (Device OR Pattern OR Positioning OR Fabrication) (blue).
9. Kitagawa, S.; Kitaura, R.; Noro, S. I. Angew. Chem., Int. Ed. 2004, 43, 2334.
10. Tranchemontagne, D. J.; Mendoza-Cortés, J. L.; Keeffe, M. O.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1257.
11. Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629.
12. Li, Y.; Zhang, S.; Song, D. Angew. Chem., Int. Ed. 2013, 52,710.
13. Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127.
14. Lan, Y. Q.; Jiang, H. L.; Li, S. L.; Xu, Q. Adv. Mater. 2011, 23, 5015.
15. Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M. J. Am. Chem. Soc. 2004, 126, 5666.
16. Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. O.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.; Yaghi, O. M. Science 2010, 329, 424.
17. Suh, M. P.; Park, H. J.; Prasad. T. K.; Lim, D. W. Chem. Rev. 2012, 112, 782.
18. Sun, D.; Ma, S.; Ke, Y.; Collins, D. J.; Zhou, H. C. J. Am. Chem. Soc. 2006, 128, 3896.
19. Zhou, H. C.; Ma, S. Q.; Sun, D. F.; Ambrogio, M.; Fillinger, J. A.; Parkin, S. J. Am. Chem. Soc. 2007, 129, 1858.
20. Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 10186.
21. Ciferno, J. P.; Fout, T. E.; Jones, A. P.; Murphy, J. T. Chem. Eng. Prog. 2009, 105, 33.
22. Silva, P.; Vilela, S. M. F.; Tomé, J. P. C.; Almeida Paz, F. A. Chem. Soc. Rev. 2015, 44, 6774.
23. Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998.
24. Couck, S.; Denayer, J. F. M.; Baron, G. V.; Rémy, T.; Gascon, J.; Kapteijn, F. J. Am. Chem. Soc. 2009, 131, 6326.
25. Zheng, B.; Yang, Z.; Bai, J.; Li, Y.; Li, S. Chem. Commun. 2010, 46, 44.
26. Chui, S. S. Y.; Lo, S. M. F.; Charmant, J; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148.
27. Caskey, S. R.; Wong-Foy, A. G.; Matzger, A. J. J. Am. Chem. Soc. 2008, 130, 10870.
28. McDonald, T. M.; D’Alessandro, D. M.; Krishna, R.; Long, J. R. Chem. Sci. 2011, 2, 2022.
29. Vaidhyanathan, R.; Iremonger, S. S.; Shimizu, G. K. H.; Boyd, P. G.; Alavi, S.; Woo, T. K. Science 2010, 330, 650.
30. Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 27.
31. Ingleson, M. J.; Bacsa, J.; Rosseinsky, M. J. Chem. Commun. 2007, 3036.
32. Kim, K.; Banerjee, M.; Yoon, M.; Das, S. Top. Curr. Chem. 2010, 293, 115.
33. Song, F.; Wang, C.; Lin, W. Chem. Commun. 2011, 47, 8256.
34. Garibay, S. J.; Wang, Z.; Tanabe, K. K.; Cohen, S. M. Inorg. Chem. 2009, 48, 7341.
指導教授 李勝隆、呂光烈(Sheng-Long Lee Kuang-Lieh Lu) 審核日期 2016-5-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明