博碩士論文 985401021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.146.221.204
姓名 洪啟彰(Chichang Hung)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 多頻段可重置性天線設計
(Multi-band Antenna Design Using Reconfigurable Techniques)
相關論文
★ 利用缺陷型接地結構之雙頻微型平面倒F天線設計★ 應用於第三代行動電話之倒F天線設計
★ 使用寄生元件之平面式倒F型雙頻天線設計★ 利用寄生元件之平面式倒 F 型三頻天線設計
★ 無線通訊之三頻天線設計★ 無線通訊之雙頻與三頻槽孔型天線設計
★ 應用於智慧型行動裝置之LTE/WWAN多頻單極天線設計★ 應用於行動手持裝置之LTE/WWAN天線設計
★ 利用背腔式槽孔線結構之多頻段天線設計★ 利用缺陷地面共振電路之介質量測技術
★ 應用於藍芽與全球衛星定位系統之電抗性負載型雙頻槽孔天線★ 帶通圓形極化頻率選擇面之設計
★ 啞鈴型缺陷地面之介質量測電路分析與設計★ 雙頻圓極化微波極化器設計
★ 利用微小共振電路之多頻段天線設計★ 應用於X-band平面吸波器之薄型負載電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本博士論文主要針對在天線設計中應用可重置性(reconfigurable)技術的研究與討論。首先,提出一個雙頻可重置性槽孔天線設計,此天線結構為基於彎折之槽孔天線並且於天線分支中加入電路元件作為附載。在設計初期,將天線結構分解為數個區塊分析,獲得相對應之等效電路。藉由設定的中心頻率以及導入共振條件,可獲得等效電路的元件值。接著將被動元件置換成變容器(varactor)之後,天線之中心頻率便具有可重置的特性。在此設計中,可重置性天線其操作頻率分別為;2.4 GHz之S雷達波段以及1.227/1.381/1.575 GHz全球定位系統(GPS)。
提出天線模組化設計方式建構出多頻段天線。首先基於一組串聯電容電感的共振電路,作為天線原型模組。在此原型模組中加入變容器,則可以設計出頻率可重置性天線模組。在圓形模組上,透過電容性耦合的饋入方式引入額外的共振模態,則可以得到寬頻天線模組。而設計出的這些模組具有不同的頻率範圍,並且可以利用組合的方式將以上設計之模組組合成多頻段天線,可應用於各種功能需求。在此章節中,透過建構4G-LTE天線來驗證天線模組組合。在可重置性模組中,其中心頻率設計在LTE700 (698-787 MHz)與GSM850 (824-960 MHz)的頻段之間切換,此模組僅需要20×20mm2。另一方面,在寬頻模組中,其中心頻率設計應用於GSM1800/ GSM1900/ UMTS/ LTE2300/ LTE2500 (1.71-2.59 GHz),所需的頻寬為49.3%,此模組僅需10×10mm2。
提出應用於GPS與S雷達波段之雙頻圓極化槽孔天線設計。在此設計中,使用非常薄之背腔(0.017 λ0操作在1.575 GHz)用來達到單方向輻射的特性。天線之雙頻操作分別是1. 利用共振模態產生1.575 GHz;2. 利用波導效果(waveguide transition)產生2.4 GHz。即使使用厚度非常小的背腔,在1.575 GHz仍可以獲得足夠的1.6 %(26 MHz)頻寬與在2.4 GHz 8.4% (203 MHz)的頻寬。接著,組合兩個雙頻背腔天線,並且使用PIN二極體作為相位調整機制的開關,可形成操作於1.575 GHz與2.4 GHz的雙頻右圓極化天線。其中,軸比分別為1.5 % (24 MHz)於1.575 GHz以及4.5 % (110 MHz)。
提出使用共振電路元件之頻率可重置性天線。在此設計中,利用電容電感元件設計一個中心頻率為2.4 GHz之帶拒濾波器。由於帶拒濾波器的頻率選擇特性,可將天線的組態分為一個2.4 GHz的單極天線,3.3-3.7與5.15-5.85 GHz的四分之一波長槽孔天線。操作於2.4 GHz時,此單極天線為主要的輻射元件,而四分之一波長槽孔則會視為皆地面。此外,在3.3與5.5 GHz時,單極天線則是四分之一波長槽孔的接地面。因此,天線之間的相互耦合效果則不需關注。所設計的雙頻與三頻段天線的尺寸分別為8.5×10mm2與14.5×10mm2。
最後,概括本論文所提出之研究成果,以及未來可研究內容於第六章。
摘要(英)

In this dissertation, several multi-band antenna with reconfigurable techniques are presented. The first part of the dissertation focuses on using varactors in the antenna to achieve active reconfigurable operation. In Chapter II, a novel design of dual-band reconfigurable slot antenna is proposed. The configuration of the proposed antenna is based on a folded slot with a branch edge formed by multiple strips loaded with circuit components. In the design, the antenna is decomposed into networks, and the corresponding equivalent circuits are deduced. By applying resonant condition on the equivalent circuit at the desired center frequencies, the circuit components can be determined. The proposed design is later transformed into a reconfigurable antenna by using varactors. The antenna configuration is also modified for applying biasing voltages to varactors. Dual-band reconfigurable operation of antenna is studied and demonstrated for S-band applications at 2.45 GHz and GPS at 1.227/1.381/1.575 GHz. The design approach is described in details. Also, antenna measurements are conducted for design validation. In Chapter III, novel resonant modules for constructing multi-band mobile antennas are proposed. The basic configuration of the module, named as the prototype module, is designed based on a series LC resonant circuit. By adding a varactor to the module, it can be transformed into a reconfigurable module. By introducing an extra resonant mode with capacitive coupling to enhance the bandwidth, a wide-band module can be obtained. These modules have different frequency ranges, and can be combined into multi-band antennas for various applications. The proposed modules are demonstrated by constructing a 4G-LTE antenna. The reconfigurable module, which is of 20×20 mm2, is designed to switch between LTE700 (698-787 MHz) and GSM850 (824-960 MHz) bands. The wide-band module, which is of 10×10 mm2 and 49.3% bandwidth, is designed for GSM1800/ GSM1900/ UMTS/ LTE2300/ LTE2500 (1.71-2.59 GHz) applications. All designs have been realized and measured for validation. The proposed antenna modules, which are simple and convenient to use, can provide flexibility, especially in antenna deployment, in multi-band mobile antenna designs.
The second part of the dissertation focuses on switchable polarization. In Chapter IV, a design of dual-band cavity-backed slot antenna loaded with a spurline is presented for GPS and S-band radar applications. In the design, a very thin cavity (0.017λ0 in thickness at 1.575 GHz) is used to achieve unidirectional radiation. The dual-band responses of the antenna are excited by the slot resonance at 1.575 GHz and waveguide transition effect at 2.4 GHz. Even with very small cavity thickness, reasonable impedance bandwidths are obtained as 1.6% (26 MHz) at 1.575 GHz and 8.4% (203 MHz) at 2.4 GHz. The proposed slot can also be loaded with a spurline to adjust the antenna center frequency and the phase of the radiated field. A switch using a PIN diode is deployed with the spurline. Since the spurline is in serial connection with the slot, the spurline and the corresponding bias circuit for the PIN diode have little effect on the antenna radiation. Two proposed slots are combined to form an antenna which is right-hand circularly-polarized at both 1.575 and 2.4 GHz. A phase delaying system consisting of delay line and the spurline is designed to achieve 90° phase difference at both frequencies. The axial-ratio bandwidths are obtained as 1.5% (24 MHz) at 1.575 GHz and 4.5% (110 MHz) at 2.4 GHz. Compared to the traditional designs in which the cavity thickness is often more then 0.25 , the proposed design with thin cavity is more suitable to be deployed on the vehicle surface.
The last part of the dissertation focuses on the reconfigurable antenna with passive components. In Chapter V, a frequency reconfigurable tri-band antenna using resonant circuit is proposed. In the design, the resonant frequency of the LC parallel resonator is designed at 2.4 GHz, which formed a band-stop filter. With the frequency selective property of the band-stop filter, the configuration of the proposed antenna is transformed into a monopole at 2.4 GHz, and quarter-wave slots at 3.3-3.7, and 5.15-5.85 GHz, respectively. At 2.4 GHz, the monopole is the main radiator, the quarter-wave slots are performed as ground plane. Besides, at 3.3 and 5.5 GHz, the monopole is the ground plane of the quarter-wave slots. Thus, the mutual coupling effect of the antennas are not of concern. The fabricated dual-band and tri-band antenna have compact dimensions of 8.5×10 mm2 and 14.5×10 mm2, respectively. Both the dual-band and tri-band antennas are tested experimentally. Measured and simulated return loss and radiation patterns are in good agreement.
關鍵字(中) ★ 可重置性天線
★ 槽孔天線
★ 背腔式天線
★ 變容器
關鍵字(英) ★ reconfigurable antenna
★ slot antenna
★ cavity-backed antenna
★ varactor
論文目次

摘要 i
ABSTRACT iii
DEDICATION vii
ACKNOWLEDGEMENTS ix
LIST OF FIGURES xiii
LIST OF TABLES xxi
CHAPTER
I. INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Survey 2
1.3 Organization of the Dissertation 5
II. DUAL-BAND RECONFIGURABLE ANTENNA DESIGN USING SLOT-LINE WITH BRANCH EDGE 9
2.1 Introduction 9
2.2 Antenna Design 12
2.2.1 Fundamental Design Scheme 12
2.2.2 Dual-band Reconfigurable Antenna Design 19
2.2.3 Tri-band Design and Bandwidth Enhancement 24
2.3 Dual-band Reconfigurable Antenna Design 26
2.4 Conclusion 33
III. RECONFIGURABLE RESONANT MODULE FOR MULTI-BAND ANTENNA DESIGN 35
3.1 Introduction 35
3.2 Design of Prototype Module 38
3.3 Reconfigurable Module and Wide-band Module for Multi-band applications 44
3.3.1 Reconfigurable Design 46
3.3.2 Wide-band Design 51
3.4 Conclusion 56
IV. DESIGN OF DUAL-BAND CAVITY-BACKED SLOT ANTENNA LOADED WITH SPURLINE 57
4.1 Introduction 57
4.2 Design of Dual-band Cavity-Backed Slot Antenna 60
4.2.1 Prototype Design 60
4.2.2 Slot Loaded with Spurline 68
4.3 Construction of Circularly-Polarized Antenna 71
4.3.1 Bias Circuit for PIN Diode 72
4.3.2 Phase-delaying Circuit and Polarization Switching 73
4.3.3 Measurement Results 74
4.4 Conclusion 77
V. FREQUENCY RECONFIGURABLE TRI-BAND HYBRID ANTENNA DESIGN USING RESONANT CIRCUIT 79
5.1 Introduction 79
5.2 Antenna Design with Reconfigurable Structure 82
5.3 Tri-band Antenna Design 89
5.4 Conclusion 93
VI. CONCLUSIONS 95
BIBLIOGRAPHY 97
PUBLICATION LIST 109
參考文獻



[1] Q. Liu, Y. Liu, Y. Wu, M. Su and J. Shen, “Compact wideband circularly polarized patch antenna for CNSS applications,” Antennas and Wireless Propagation Letters, IEEE, vol.12, pp.1280-1283, 2013.
[2] S. Gupta and G. Mumcu, “Dual-band miniature coupled double loop GPS antenna loaded with lumped capacitors and inductive pins,” IEEE Trans. Antennas Propag., vol. 61, no. 6, pp. 2904-2910, June. 2013.
[3] R. Di Bari, T. Brown, S. Gao, M. Notter, D. Hall and C. Underwood, “Dual-polarized printed S-band radar array antenna for spacecraft applications,” Antennas and Wireless Propagation Letters, IEEE , vol.10, pp.987-990, 2011.
[4] E. C. Choi, J. W. Lee and T. K. Lee, “Modified S-band satellite antenna with isoflux pattern and circularly polarized wide beamwidth,” Antennas and Wireless Propagation Letters, IEEE , vol.12, pp.1319-1322, 2013.
[5] A. A. Gheethan, P. A. Herzig and G. Mumcu, ”Compact 2×2 coupled double loop GPS antenna array loaded with broadside coupled split ring resonators,” IEEE Trans. Antennas Propag., vol. 61, no. 6, pp. 3000-3008, June. 2013.
[6] S. K. Sharma and L. Shafai, “Investigation of wide-band microstrip slot antenna,” IEEE Trans. Antennas Propag., vol. 52, no. 3, pp. 865–872, Mar. 2004.
[7] C. P. Hsieh, T. C. Chiu, and C. H. Lai, “Compact Dual-Band Slot Antenna at the Corner of the Ground Plane,” IEEE Trans. Antennas and Propag., vol.57, no. 10, pp. 3423-3426, Oct. 2009.
[8] K.L. Wong, and L.C. Lee, “Multiband printed monopole slot antenna for WWAN operation in the laptop computer,” IEEE Trans. Antennas and Propag., vol. 57, no. 2, pp. 324–330, Feb. 2009.
[9] W. S. Chen, and W. C. Jhang, “A planar WWAN/LTE antenna for portable devices,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 19–22, 2013.
[10] C. P. Hsieh, and T. C. Chiu, “Dual-band antenna design using a dual-feed monopole slot,” Microwaves, Antennas & Propagation, IET , vol. 5, no. 12, pp. 1502-1507, Sep. 2011.
[11] J. W. Wu, C. F. Jou, and C. J. Wang, “A compact wideband leaky-wave antenna with etched slot elements and tapered structure,” IEEE Trans. Antennas and Propag., vol. 58, no. 7, pp. 2176-2183, Jul. 2010.
[12] N. Behdad and K. Sarabandi, “A multiresonant single-element wideband slot antenna,” IEEE Antennas Wireless Propag. Lett., vol. 3, pp. 5–8, 2004.
[13] N. Behdad, and K. Sarabandi, “A varactor-tuned dual-band slot antenna,” IEEE Trans. Antennas and Propag., vol. 54, no. 2, pp. 401-408, Feb. 2006.
[14] P. L. Chi, R. Waterhouse, and T. Itoh, “Compact and tunable slot-loop antenna,” IEEE Trans. Antennas and Propag., vol. 59, no. 4, pp. 1394-1397, Apr. 2011.
[15] J. Desjardins, D. A. McNamara, S. Thirakoune, and A. Petosa, “Electronically frequency-reconfigurable rectangular dielectric resonator antennas,” IEEE Trans. Antennas and Propag., vol. 60, no. 6, pp. 2997-3002, Jun. 2012.
[16] H. A. Majid, M. K. A. Rahim, M. R. Hamid, N. A. Murad, and M. F. Ismail, “Frequency-reconfigurable microstrip patch-slot antenna,” IEEE . Antennas Wireless Propag. Lett., vol. 12, pp. 218-220, 2013.
[17] ANSYS Inc.: High frequency structure simulator (HFSS).
[18] Aglient Technologies: Advanced design system (ADS).
[19] D. M. Pozar, Microwave Engineering, 3rd ed. New Work: Wiley, 2003.
[20] M/A-COM Technology Solutions Inc. [Online]. Available: http://www.macomtech.com/datasheets/MA46H120.pdf
[21] A. Y. Hu, “Antenna Device A Communication Device Including Such An Antenna Device and A Method of Operating The Communication Device,” U.S. Patent 6 492 952, Dec. 10, 2002.
[22] R. Hill, “Dual Polarization Slot Antenna Assembly,” U.S. Patent 6 404 394, Jun. 11, 2002.
[23] Y. Ota, M. Noto, T. Suzuki, and M. Kubota, “Mobile Radio Device,” U.S. Patent 2003/0190896, Oct. 9, 2003.
[24] Y. Qi, A. Cooke, Y. T. Man, and P. Jarmuszewski, “Mobile Wireless Communications Device Comprising A Satellite Positioning System Antenna With Active and Passive Elements and Related Methods,” U.S. Patent 8 063 836, Nov. 22, 2011.
[25] Moosazadeh, M., Kharkovsky, S.: ‘Compact and small planar monopole antenna with symmetrical L- and U-shaped slots for WLAN/WiMAX applications’, IEEE Antennas Wireless Propag. Lett., 2014, 13, pp. 388–391
[26] Cao, Y. F., Cheung, S. W., Yuk, T. I.: ‘A multiband slot antenna for GPS/WiMAX/WLAN systems’, IEEE Trans. Antennas Propag., 2015, 63, (3), pp. 952–958
[27] Liu, H. J., Li, R. L., Pan, Y., Quan, X. L., Yang, L., Zheng, L.: ‘A multi-broadband planar antenna for GSM/UMTS/LTE and WLAN/WiMAX handsets’, IEEE Trans. Antennas Propag., 2014, 62, (5), pp. 2856–2860
[28] Wong, K. L., Lee, L. C.: ‘Multiband printed monopole slot antenna for WWAN operation in the laptop computer’, IEEE Trans. Antennas Propag., 2009, 57, (2), pp. 324–330
[29] Lai, A., Caloz, C., Itoh, T.: ‘Composite right/left-handed transmission line metamaterials’, IEEE Microw. Mag., 2004, 5, (3), pp. 34-50
[30] Lee, C. J., Leong, K. M. K. H., Itoh, T.: ‘Composite right/left-handed transmission line based compact resonant antennas for RF module integration’, IEEE Trans. Antennas Propag., 2006, 54, (8), pp. 2283–2291
[31] Ueda, T., Michishita, N., Akiyama, M., Itoh, T.: ‘Dielectric-resonator-based composite right/left-handed transmission lines and their application to leaky wave antenna’, IEEE Trans. Microw. Theory Tech., 2008, 56, (10), pp. 2259–2269
[32] Chi, P. L., Shih, Y. S.: ‘Compact and bandwidth-enhanced zeroth-order resonant antenna’, IEEE Antennas Wireless Propag. Lett., 2015, 14, pp. 285–288
[33] Ko, S. T., Lee, J. H.: ‘Hybrid zeroth-order resonance patch antenna with broad E-plane beamwidth’, IEEE Trans. Antennas Propag., 2013, 61, (1), pp. 19–25
[34] Wang, G., Feng, Q.: ‘A novel coplanar waveguide feed zeroth-order resonant antenna with resonant ring’, IEEE Antennas Wireless Propag. Lett., 2014, 13, pp. 774–777
[35] Ji, J. K., Kim, G. H., Seong, W. M.: ‘A compact multiband antenna based on DNG ZOR for wireless mobile system’, IEEE Antennas Wireless Propag. Lett., 2009, 8, pp. 920–923
[36] Li, L., Jia, Z., Huo, F., Han.: ‘A novel compact multiband antenna employing dual-band CRLH-TL for smart mobile phone application’, IEEE Antennas Wireless Propag. Lett., 2013, 12, pp. 1688–1691
[37] Khidre, A., Yang, F., Elsherbeni, Z.: ‘A patch antenna with a varactor-loaded slot for reconfigurable dual-band operation’, IEEE Trans. Antennas Propag., 2015, 63, (2), pp. 755–760
[38] Tariq, A., Ghafouri-Shiraz, H.: ‘Frequency-reconfigurable monopole antennas’, IEEE Trans. Antennas Propag., 2012, 60, (1), pp. 44–50
[39] Hung C., Chiu, T.: ‘Dual-band reconfigurable antenna design using slot-line with branch edge’, IEEE Trans. Antennas Propag., 2015, 63, (2), pp. 508–516
[40] Wong, K. L., Liao, Z. G.: ‘Passive reconfigurable triple wideband antenna for LTE tablet computer’, IEEE Trans. Antennas Propag., 2015, 63, (3), pp. 901–908
[41] Lu, J. H., Wang, Y. S.: ‘Planar small-size eight-band LTE/WWAN monopole antenna for tablet computers’, IEEE Trans. Antennas Propag., 2014, 62, (8), pp. 4372–4377
[42] Wong, K. L., Chen, M. T.: ‘Small-size LTE/WWAN printed loop antenna with an inductively coupled branch strip for bandwidth enhancement in the tablet computer’, IEEE Trans. Antennas Propag., 2013, 61, (12), pp. 6144–6151
[43] Sung, Y.: ‘Simple inverted-F antenna based on independent control of resonant frequency for LTE/wireless wide area network applications’, IET Microw. Antennas Propag., 2015, 9, (6), pp. 553–560
[44] High frequency structure simulator (HFSS), version, 13, ANSYS Inc.
[45] Advanced design system (ADS), version, 2009, Agilent Technologies
[46] ‘Over view on interdigital capacitor design’, http://cp.literature.agilent.com/litweb/pdf/5989-8912EN.pdf, accessed 18 June 2015
[47] ‘Agilent network analyzer PNA E8362B’, http://literature.cdn.keysight.com/litweb/pdf/5988-7988EN.pdf?id=1000084422:epsg:dow, accessed 9 March 2015
[48] ‘Mini-Circuits’, http://www.minicircuits.com/pdfs/LDP-1050-252+.pdf, accessed 15 January 2015
[49] ‘M/A-COM Technology Solutions Inc.’, http://www.macomtech.com/datasheets/MA46H120.pdf, accessed 20 April 2014
[50] Volakis, J. L.: ‘Antenna engineering handbook’ (McGraw-Hill, 2007, 4th edn.)
[51] Morishita, H., Hirasawa, K., Fujimoto, K.: ‘Analysis of a cavity-backed annular slot antenna with one point shorted’, IEEE Trans. Antennas Propag., 1991, 39, (10), pp. 1472-1478
[52] Qu, S. W., Li, J. L., Xue, Q., Chan, C. H.: ‘Wideband cavity-backed bowtie antenna with pattern improvement’, IEEE Trans. Antennas Propag., 2008, 56, (12), pp.3850-3854
[53] Saurav, K., Sarkar, D., Singh, A., Srivastava, K. V.: ‘Multi-band circularly polarized cavity backed crossed dipole antenna’, IEEE Trans. Antennas Propag., 2015 to be published
[54] Liu, Y., Shen, Z.: ‘A compact dual- and wideband cavity-backed slot subarray’, IEEE Antennas Wireless Propag. Lett., 2007, 6, pp. 80-82
[55] Liu, Y., Shen, Z., Law, C. L.: ‘A compact dual-band cavity-backed slot antenna’, IEEE Antennas Wireless Propag. Lett., 2006, 5, pp. 4-6
[56] Lee, J. N., Lee, K. C., Song, P. J.: ‘The design of a dual-polarized small base station antenna with high isolation having a metallic cube’, IEEE Trans. Antennas and Propag., 2015, 63, (2), pp. 791-795
[57] Cai, Y. M., Li, K., Yin, Y. Z., Ren, X.: ‘Dual-band circularly polarized antenna combining slot and microstrip modes for GPS with HIS ground plane’, IEEE Antennas Wireless Propag. Lett., 2015, 14, pp. 1129-1132
[58] Zhang, T., Hong, W., Zhang, Y., Wu, K.: ‘Design and analysis of SIW cavity backed dual-band antennas with a dual-mode triangular-ring slot’, IEEE Trans. Antennas Propag., 2014, 62, (10), pp. 5007-5016
[59] Hsieh, W. T., Chang, T. H., Kiang, J. F.: ‘Dual-band circularly polarized cavity-backed annular slot antenna for GPS receiver’, IEEE Trans. Antennas Propag., 2012, 60, (4), pp. 2076-2080
[60] Hung, K. F., Lin, Y. C.: ‘Novel broadband circularly polarized cavity-backed aperture antenna with traveling wave excitation’, IEEE Trans. Antennas and Propag., 2010, 58, (1), pp. 35-42
[61] Yang, W., Zhou, J.: ‘Wideband circularly polarized cavity-backed aperture antenna with a parasitic square patch’, IEEE Antennas Wireless Propag. Lett., 2014, 13, pp. 197-200
[62] Razavi, S. A., Neshati, M. H.: ‘Development of a low-profile circularly polarized cavity-backed antenna using HMSIW technique’, IEEE Trans. Antennas and Propag., 2013, 61, (3), pp. 1041-1047
[63] Saurav, K., Sarkar, D., Srivastava, K. V.: ‘Dual-band circularly polarized cavity-backed crossed-dipole antennas’, IEEE Antennas Wireless Propag. Lett., 2015, 14, pp. 52-55
[64] Ta, S. X., Choo, H., Park, I., Ziolkowski, R. W.: ‘Multi-band, wide-beam, circularly polarized, crossed, asymmetrically barbed dipole antennas for GPS antenna’, IEEE Trans. Antennas and Propag., 2013, 61, (11), pp. 5771-5775
[65] Kim, D. Y., Lee, J. W., Lee, T. K., Cho, C. S.: ‘Design of SIW cavity-backed circular-polarized antennas using two different feeding transitions’, IEEE Trans. Antennas and Propag., 2013, 59, (4), pp. 1398-1403
[66] Saghati, A. P., Entesari, K.: ‘A reconfigurable SIW cavity-backed slot antenna with one octave tuning range’, IEEE Trans. Antennas and Propag., 2013, 61, (8), pp. 3937-3945
[67] Krishna, D. R., Pandharipande, V. M., Koul, S. K.: ‘Dual state dual band frequency reconfigurable SIW antenna’, Proc. EuCAP 2014, pp. 185-188
[68] White, C. R., Rebeiz, G. M.: ‘A shallow varactor-tuned cavity-backed slot antenna with a 1.9:1 tuning range’, IEEE Trans. Antennas and Propag., 2010, 58, (3), pp. 633-639
[69] White, C. R., Rebeiz, G. M.: ‘A differential dual-polarized cavity-backed microstrip patch antenna with independent frequency tuning’, IEEE Trans. Antennas and Propag., 2010, 58, (11), pp. 3490-3498
[70] Pozar, D. M.: ‘Microwave Engineering’ (Wiley, 2003, 3rd edn.)
[71] Gupta, K. C., Garg, R., Bahl, I., Bhartia, P.: ‘Microstrip line and slot lines’ (Artech House 1996)
[72] High frequency structure simulator (HFSS), version, 13, ANSYS Inc.
[73] Nguyen, C., Chang, K.: ‘On the analysis and design of spurline bandstop filters’, IEEE Trans. Microw. Theory Tech., 1985, 33, (12), pp. 1416–1421
[74] Goverdhanam, K., Simons, R. N., Katehi, L. P. B.: ‘Coplanar stripline components for high-frequency applications’, IEEE Trans. Microw. Theory Tech., 1997, 45, (10), pp. 1725-1729.
[75] ‘Skyworks.’, http://www.skyworksinc.com/uploads/documents/SMP1345_Series_200046S.pdf, accessed 20 April 2015.
[76] Z. Li, and, Y. Rahmat-Samii, “Optimization of pifa-ifa combination in handset antenna designs,” IEEE Trans. Antennas Propag., vol. 53, pp. 1170-1178, May. 2005.
[77] C. I. Lin, and, K. L. Wong, “Printed monopole slot antenna for internal multiband mobile phone antenna,” IEEE Trans. Antennas Propag., vol. 55, pp. 3690-3697, Dec. 2007.
[78] J. Zhu, M. A. Antoniades, and G. V. Eleftheriades, “A compact tri-band monopole antenna with single-cell metamaterial loading,” IEEE Trans. Antennas Propag., vol. 58, pp. 1031-1038, Apr. 2010.
[79] A. R. Razali, and M. E. Bialkowski, “Coplanar inverted-f antenna with open-end ground slots for multiband operation,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 1029-1032, 2009.
[80] A. P. Saghati, M. Azarmanesh, and R. Zaker, “A novel switchable single- and multifrequency triple-slot antenna for 2.4-GHz bluetooth, 3.5-GHz WiMAX, and 5.8-GHz WLAN,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 534-537, 2010.
[81] S. Yang, A. E. Fathy, S. M. El-Ghazaly, and V. K. Nair, “Novel reconfigurable multi-band antennas for multiradio platforms,” in IEEE Radio and Wireless Symp., Jan. 2008, pp. 723-726.
[82] J. H. Lim, G. T. Back, Y. I. Ko, C. W. Song, and T. Y. Yun, “A reconfigurable PIFA using a switchable PIN-diode and a fine-tuing varactor for USPCS/WCDMA/m-WiMAX/WLAN,” IEEE Trans. Antennas Propag., vol. 58, pp. 2404-2411, Jul. 2010.
[83] S. Hwang, G. Park, J. Byun, and A. S. Kim, “A PCB embedded antenna for 2.4 / 5.2 GHz WLAN and 2.6 GHz SDMB / WiMAX applications,” in IEEE Antennas and Propagation Society Int. Symp. Digest, Jul. 2008, pp. 1-4.
[84] Y. S. Shin, and S. O. Park, “A compact loop type antenna for Bluetooth, S-DMB, Wibro, WiMAX, and WLAN applications,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 320-323, 2007.
[85] W. S. Chen, F. Y. Lin, and C. H. Lin, “Novel design of open-slot broadband antenna with dual band-rejected characteristics for WiMAX applications,” in Proc. Asia-Pacific Microw. Conf., Dec. 2008, pp. 1-4.
[86] J. Qiu, and J. Pan, “A newly designed omnidirectional microstrip antenna for WiMAX applications,” in IEEE Antennas and Propagation Society Int. Symp. Digest, Jun. 2009, pp. 1-4.
[87] S. Chaimool, and K. L. Chung, “CPW-fed mirrored-L monopole antenna with distinct triple bands for WiFi and WiMAX applications,” Electron. Lett., vol. 45, pp. 928-929, 2009.
[88] High Frequency Structure Simulator (HFSS), version 11.0, Ansoft Corporation.
[89] Advance Design System (ADS), version 2009, Aglient Technologies.
[90] J. S. Hong, and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
[91] T. W. Kang, and K. L. Wong, “Very small size printed monopole with embedded chip inductor for 2.4/5.2/5.8 GHz WLAN laptop computer antenna,” Microw. Opt. Technol. Lett., vol. 52, pp. 171–177, Jan. 2010.
[92] S. K. Sharma and L. Shafai, “Investigation of wide-band microstrip slot antenna,” IEEE Trans. Antennas Propag., vol. 52, no. 3, pp. 865–872, Mar. 2004.
[93] Agilent PNA Series Network Analyzer User’s and Programming Guide, Agilent Technologies, 2008.
指導教授 丘增杰(Tsenchieh Chiu) 審核日期 2016-5-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明