博碩士論文 103621601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.188.68.169
姓名 張幼  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 利用MPAS模式探討大尺度環流變異度對莫拉克颱風(2009)路徑之影響
(The Influence of Large-scale Flow Variability on Translation of Typhoon Morakot (2009) Using MPAS Simulations)
相關論文
★ 春季中國華南地區層積雲分析★ 近赤道東太平洋特定海域之降水年際變異探討
★ 聖嬰現象對颱風的影響之研究★ 1999年12月至2016年12月期間越南中部地區極端降雨
★ 2016東亞極端寒潮事件研究★ 春季大氣環流對東南亞氣膠傳輸之影響
★ 1979-2017年西北太平洋颱風年代際變化探討★ 台灣夏季季風之研究
★ 熱帶與副熱帶地區半年週期震盪之探討★ 台灣冬季降水年際變化之研究
★ 颱風季節降雨量之年際變化★ 颱風季節台灣降雨量年際變化之研究
★ 1979年夏季印度季風季內變化之研究★ 福爾摩沙衛星三號掩星資料對全球夏季氣候研究的影響
★ 福衛三號掩星資料在東亞季風研究之應用★ 台灣乾溼梅特徵分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 前人研究結果表明,西南季風與Madden-Julian oscillations (MJO)共同作用的大尺度條件下,莫拉克(Morakot)颱風(2009)在台灣登陸後停滯超過十五小時,給台灣南部帶來嚴重的災害。本文利用可變解析度(60-15 km)全球模式Model for Prediction Across Scales (MPAS) 探討不同時間尺度的季風環流對莫拉克颱風移動路徑的影響。模式的初始場取自ERA-interim的再分析資料,分離出三個不同時間尺度的分量,分別為綜觀尺度(SYN)、準雙週(QBW)以及MJO分量。
為了探討這三個分量各自對莫拉克路徑的影響,本研究設計了敏感性實驗。實驗結果表明,當初始環境場移除QBW和MJO兩個季風分量,莫拉克向西移動越過台灣,並且沒有北轉。當初始環境場的MJO分量增加50%,台灣東南部出現較強的南風和東南風異常,從而導致莫拉克相較實際觀測提早往北移動。在控制實驗中,莫拉克颱風路徑介於MJO強度分別增加和減少50%的路徑之間,顯示莫拉克向西移動與季風環流的連結作用是導致其向北移動的主要因素。
本文亦探討MJO對梅姬(Megi)颱風(2009)路徑的影響。模擬結果與上述莫拉克路徑結論一致,當模式初始場移除MJO分量後,原本北轉的梅姬颱風在登陸菲律賓後,繼續向西移動,並在中國海南島北部二次登陸。
摘要(英) This study uses the global MPAS Model at variable 60-15 km resolution to investigate the interaction between the Typhoon Morakot (2009) and the large-scale environmental flows. Three components of different time scales are filtered from ERA-interim for the model initial fields, namely the synoptic-scale (SYN) mode, quasi-biweekly (QBW) mode and the Madden-Julian oscillations (MJO) mode. To investigate the individual effect of multi-time-scale flows on the evolution of Typhoon Morakot, sensitivity experiments are conducted. Compared to the WRF simulations with different resolutions, the simulation of the TC movement is better for the control experiment, especially the northward turn after making landfall. In the absence of larger-scale monsoonal flow (no_QBW and no_MJO), the simulated Morakot in general takes a quite westward track across Taiwan, without the observed northward movement after landfall. On the other hand, there exists southwesterly wind anomaly from South China Sea to the vicinity east of Taiwan in the Western North Pacific when the intensity of MJO component in the initial field is enhanced by 50%, thus resulting in a north turn of Morakot at a much earlier time than the observed. The simulated Morakot track under the intact MJO component lies in between MJO+50% and MJO-50% experiments, which suggests that the coalescence of Morakot with the monsoonal flow may be intimately related to its north turn after landfall.
The MJO on the track of Typhoon Megi also shows similar impacts as in Morakot. In the absence of MJO, the simulated Megi in general takes a westward movement after passing over the Philippines without turning north.
關鍵字(中) ★ 大尺度環流
★ 颱風
關鍵字(英) ★ MJO
★ MPAS
論文目次 摘要 i
Abstract ii
Table of Contents iii
List of Tables v
List of Figures vi
Chapter 1. Introduction 1
Chapter 2. Data and Methodology 4
2.1. Data 4
2.2. Wavelet Transform (WT) 4
2.3. Lanczos Filter 5
Chapter 3. Model Description and Configuration 8
3.1. MPAS model 8
3.2. WRF model 10
Chapter 4. Case Study and Experimental Design 11
4.1. Typhoon Morakot 11
4.1.1. Overview of Morakot 11
4.1.2. The monsoon flow associated with Typhoon Morakot 12
4.2. Experimental Design 14
Chapter 5. Results and Discussions 15
5.1. Simulations of Typhoon Morakot 15
5.2. The impact of large-scale flow on Morakot track 17
5.2.1. The impact of various-scales flow 17
5.2.2. The impact of MJO variability 18
5.3. The impact of large-scale flow on Megi track 20
Chapter 6. Conclusions 23
Reference 25
Table 29
Figure 30
參考文獻 Bi, M., T. Li, M. Peng, and X. Shen, 2015: Interactions between Typhoon Megi (2010) and a Low-Frequency Monsoon Gyre*. Journal of the Atmospheric Sciences, 72, 2682-2702.
Chen, G., and C.-H. Sui, 2010: Characteristics and origin of quasi-biweekly oscillation over the western North Pacific during boreal summer. Journal of Geophysical Research, 115.
Chien, F. C., and H. C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). Journal of Geophysical Research: Atmospheres, 116, D05104, doi:10.1029/2010JD015092.
Ching, L., C.-H. Sui, M.-J. Yang, and P.-L. Lin, 2015: A modeling study on the effects of MJO and equatorial Rossby waves on tropical cyclone genesis over the western North Pacific in June 2004. Dynamics of Atmospheres and Oceans, 72, 70-87.
Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. Journal of Applied Meteorology, 18, 1016-1022.
Elsberry, R. L. (2004), Monsoon‐related tropical cyclones in East Asia, in East Asian Monsoon, World Scientific Series on Meteorology of East Asia, vol. 2, edited by C.‐P. Chang, pp. 463–498, World Sci., Singapore.
Fang, X., Y.-H. Kuo, and A. Wang, 2011: The impacts of Taiwan topography on the predictability of Typhoon Morakot′s record-breaking rainfall: A high-resolution ensemble simulation. Weather and Forecasting, 26, 613-633.
Farge, M., 1992: Wavelet transforms and their applications to turbulence. Annual review of fluid mechanics, 24, 395-458.
Ge, X., T. Li, S. Zhang, and M. Peng, 2010: What causes the extremely heavy rainfall in Taiwan during Typhoon Morakot (2009)? Atmospheric science letters, 11, 46-50.
Hagos, S., R. Leung, S. A. Rauscher, and T. Ringler, 2013: Error characteristics of two
grid refinement approaches in aquaplanet simulations: MPAS-A and WRF. Monthly Weather Review, 141, 3022-3036.
Hack, J. J., and W. H. Schubert, 1981: Lateral boundary conditions for tropical cyclone models. Monthly Weather Review, 109, 1404-1420.
Harr, P. A., and R. L. Elsberry, 1991: Tropical cyclone track characteristics as a function of large-scale circulation anomalies. Monthly Weather Review, 119, 1448-1468.
Hendricks, E. A., J. R. Moskaitis, Y. Jin, R. M. Hodur, J. D. Doyle, and M. S. Peng, 2011: Prediction and Diagnosis of Typhoon Morakot (2009) Using the Naval Research Laboratory′s Mesoscale Tropical Cyclone Model. Terrestrial, Atmospheric & Oceanic Sciences, 22, 579-594.
Hong, C. C., M. Y. Lee, H. H. Hsu, and J. L. Kuo, 2010: Role of submonthly disturbance and 40–50 day ISO on the extreme rainfall event associated with Typhoon Morakot (2009) in southern Taiwan. Geophysical Research Letters, 37, L08805, doi: 10.1029/2010GL042761.
Huang, C.-Y., C.-S. Wong, and T.-C. Yeh, 2011: Extreme Rainfall Mechanisms Exhibited by Typhoon Morakot (2009). Terrestrial, Atmospheric & Oceanic Sciences, 22, 613-632.
Hsu, P.-C., and T. Li, 2011: Interactions between Boreal Summer Intraseasonal Oscillations and Synoptic-Scale Disturbances over the Western North Pacific. Part II: Apparent Heat and Moisture Sources and Eddy Momentum Transport*. Journal of Climate, 24, 942-961.
Ko, K.-C., and H.-H. Hsu, 2006: Sub-monthly circulation features associated with tropical cyclone tracks over the East Asian monsoon area during July-August season. 気象集誌. 第 2 輯, 84, 871-889.
Ko, K. C., and H. H. Hsu, 2009: ISO modulation on the submonthly wave pattern and recurving tropical cyclones in the tropical western North Pacific. Journal of Climate, 22(3), 582-599.
Liang, J., L. Wu, X. Ge, and C.-C. Wu, 2011: Monsoonal Influence on Typhoon Morakot (2009). Part II: Numerical Study. Journal of the Atmospheric Sciences, 68, 2222-2235.
Liebmann, B., Hendon, H. H., & Glick, J. D. (1994). The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden-Julian oscillation. Journal of the Meteorological Society of Japan, 72(3), 401-412.
Liebmann, B., 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275-1277.
Skamarock, W., and Coauthors, 2008: A description of the advanced research WRF Version 3, NCAR tech note NCAR/TN 475 STR, 125 pp. Available from: UCAR Communications, PO Box, 3000.
Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Monthly Weather Review, 140, 3090-3105.
Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bulletin of the American Meteorological society, 79, 61-78.
Wang, C.-C., H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. Journal of the Atmospheric Sciences, 69, 3172-3196.
Wu, C.-C., and Y.-H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bulletin of the American Meteorological Society, 80, 67-80.
指導教授 黃清勇、嚴明鉦(Ching-Yuang Huang Ming-Cheng Yen) 審核日期 2016-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明