博碩士論文 103621021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.144.21.200
姓名 吳曜竹(Yao-Chu Wu)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 凡那比(2010)颱風登陸後眼牆重建之數值模擬研究
相關論文
★ 單雷達風場反演—【移動坐標法】的特性分析與應用★ 由都卜勒風場反演熱動力場的新方法 ——TAMEX IOP#2颮線個案應用分析
★ 利用VAD技術及回波保守方程反演渦度場★ 利用單都卜勒雷達反演三維風場之研究─以數值模式資料驗證
★ 在地形上由都卜勒風場反演熱動力場★ 利用Extended-GBVTD方法反求非軸對稱颱風(颶風)風場結構
★ 同化雷達資料對數值預報影響之研究★ 使用系集卡曼濾波器同化都卜勒雷達資料之研究
★ 以3DVAR同化都卜勒雷達觀測及反演資料對於數值模擬結果的影響★ 台灣北部初秋豪雨個案之降雨特性研究
★ MM5模式模擬之納莉颱風(2001)登陸時風場結構變化★ 同化都卜勒雷達資料改善模式預報之研究
★ 納莉颱風(2001)之水收支分析★ WRF模式Double-moment雲微物理參數化法對於SoWMEX IOP-4個案降水模擬之敏感度研究
★ 2008年台灣西南部地區TRMM降雨雷達與七股雷達回波觀測比較分析及降雨估計應用研究★ 使用四維變分同化都卜勒雷達資料以改進短期定量降雨預報
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 當颱風凡那比在2010年9月19日01UTC於花蓮登陸後,被台灣中央山脈的複雜地形破壞並減弱。凡那比移至山脈西側時眼牆被重建,並在台灣西南部造成豪雨災情。在眼牆重建時期,移動式X波段雙偏極化都卜勒雷達(TEAM-R)觀測到南風增強由底層開始向中層延伸。本研究使用高解析度的WRF模式(巢狀網格最內層為1-km網格間距),討論凡那比颱風自9月18日00 UTC至9月20日00 UTC期間過山後眼牆的重建機制。透過渦度收支分析的結果顯示:水平渦度平流在中高層都有氣旋式渦度貢獻。凡那比中心通過地形之前,高層正渦度過山使得渦管拉伸,造成山脈西側底層有氣旋式渦度累積並且透過垂直渦度平流由低層(1 km)向中層(3 km)增加。地形和邊界層的垂直風切是在颱風中心過山前造成抽拉項和傾斜項的主因。當颱風中心完整通過中央山脈後,南側的主要雨帶遇到地形向北轉並產生顯著的曲率。雨帶中二次水平風速極大值(SHWM)的噴流結構形成,配合下坡風和對流的空間分佈,造成低層水平渦管傾斜加強底層的正渦度。同時氣旋式渦度由低層(1 km)往中層(4 km)傳送,直到高低層渦旋中心結合並完成眼牆重建過程。同時進行地形敏感度實驗,以檢驗眼牆重建過程中渦度平流、拉伸和傾斜的不同角色。總結來說,凡那比颱風的眼牆重建應為由下而上(bottom-up)的物理過程。
摘要(英) In this study, numerical simulations of Typhoon Fanapi (2010) interacting with Taiwan terrain are conducted using the Weather Research and Forecasting model (WRF; version 3.3.1) on a triply-nested grid (with the finest grid size of 1 km and 55 vertical levels). Typhoon Fanapi made landfall on eastern Taiwan on 0040 UTC 19 September and left Taiwan on 1200 UTC 19 September 2010, producing heavy rainfall and severe floods over southwestern Taiwan. Kinematic and microphysical characteristics within typhoon eyewall and inner rainbands were observed by the operational Doppler radar over Chigu and a research mobile dual-polarmetric radar (TEAM-R) over Kaohsiung.
When Fanapi approached eastern Taiwan from the ocean, the low-level eyewall gradually weakened and broke down due to strong friction by steep terrain over the Central Mountain Range (CMR), and a secondary low was formed on the lee side (western Taiwan) by adiabatic subsidence. Above the CMR, the Fanapi vortex continued its westward track with a slightly southward deflection. Control simulation showed that as the Fanapi vortex passed through the CMR to the western foothill, positive vorticity was gradually built up within the lee-side secondary low and transported upward from the surface. Then the Fanapi eyewall was reconstructed with a complete vortex ring, as revealed from radar observations.
A series of reduced-terrain experiments are conducted to verify the eyewall reconstruction mechanism. In the absence of Taiwan terrain, Fanapi would continue its westward movement without any deflection and the eyewall remained intact. With only half of Taiwan terrain, the southward track deflection was reduced and the degree of eyewall breakdown over the CMR and eyewall reconstruction over the lee side of the CMR was less obvious. A southerly jet was formed along the western foothill of CMR as the secondary horizontal wind maximum (SHWM) within the principal rainband encountered the CMR. The southerly jet resulted from the strong vertical shear of horizontal wind shear within the SHWM or the tilting of horizontal vortex tube within the SHWM by the downslope winds above the CMR and convective updrafts within the rainband. Through the vorticity-budget analyses and terrain sensitivity experiments, it is found that the bottom-up processes is active to reorganize the eyewall when Typhoon Fanapi was over the southwestern plain of the CMR.
關鍵字(中) ★ 眼牆重建
★ 二次水平最大風極值
關鍵字(英) ★ eyewall reorganization
★ SHWM
論文目次 中文摘要 I
英文摘要 III
目錄 V
圖表目錄 VII
第一章、緒論 1
1.1文獻回顧 1
1.2研究動機 4
1.3論文架構 5
第二章 模式概述 6
2.1模式簡介 6
2.2模式設定 7
第三章 研究方法 10
3.1渦度收支計算 10
3.2準拉格朗日跟隨颱風中心移動坐標渦度方程 12
3.3地形敏感度測試 14
第四章 控制組模擬與觀測檢驗 15
4.1都卜勒雷達最大雷達徑向風與模擬風場的比較 17
4.2 多都卜勒雷達合成風場與模擬風場的比較 19
4.3 X波段雙偏極化都卜勒雷達觀測風場與模擬風場的比較 21
第五章 地形敏感度實驗及渦度收支分析 23
5.1地形敏感度實驗結果 23
5.2渦度收支:剩餘項 25
5.3渦度收支:渦度水平平流項 26
5.4渦度收支:抽拉項 27
5.5渦度收支: 渦度垂直平流項 28
5.6渦度收支:傾斜項 31
5.7渦度收支總結 32
第六章 結論 34
參考文獻 37
參考文獻 李清勝、鄭光浩,陳柏孚、謝宜桓、鄧旭峰,2015:”侵台颱風過山期間雨帶
重建之初步研究”。大氣科學,第 43 卷,第 1 期,69-90。

黃沛渝,2012:”使用多部都卜勒/偏極化雷達分析凡那比颱風(2010)的動力及
雲物理過程”。國立中央大學,大氣物理研究所,碩士論文,共 77 頁。

黃怡瑄,2008:島嶼地形影響颱風偏轉及打轉之機制研究。國立台灣大學,大
氣科學研究所,碩士論文,共76 頁。

黃清勇、李志昕,2009:”西北向侵台颱風中心路徑打轉之模擬研究”。大氣
科學,第 37 卷,第 2 期,121-154。

Chen, T. J. G., and L. F. Bosart, 1979: A quasi-Lagrangian vorticity budget of
composite cyclone-anticyclone couplets accompanying North American
polar air outbreaks. J. Atmos. Sci., 36, 185-194.

Elsberry, R. L., and P. A. Harr, 2008: Tropical cyclone structure (TCS08) field
experiment science basis, observational platforms, and strategy. Asia-Pac. J. Atmos. Sci, 44, 209-231.

Fang, J., and F. Zhang, 2010: Initial development and genesis of Hurricane Dolly
(2008). J. Atmos. Sci., 67, 655-672.

Hence, D. A., and R. A. Houze, 2008: Kinematic structure of convective-scale
elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108.

Jian, G. J., and C. C. Wu, 2008: A numerical study of the track deflection of
Supertyphoon Haitang (2005) prior to its landfall in Taiwan. Mon. Wea. Rev., 136, 598-615.

Judt, F., and S. S. Chen, 2010: Convectively generated potential vorticity in
rainbands and formation of the secondary eyewall in Hurricane Rita of 2005. J. Atmos. Sci., 67, 3581-3599.

Lin, Y. L., J. Han, D. W. Hamilton, and C. Y. Huang, 1999: Orographic influence
on a drifting cyclone. J. Atmos. Sci., 56, 534-562.

Liou, Y. C., T. C. Chen Wang, and P. Y. Huang, 2016: The Inland Eyewall
Reintensification of Typhoon Fanapi (2010) Documented from an Observational Perspective Using Multiple-Doppler Radar and Surface Measurements. Mon. Wea. Rev., 144, 241-261.

Mesinger, F. 1984: A blocking technique for representation of mountains in
atmospheric models. Riv. Meteor. Aeronaut., 44, 195-202.

Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A
vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355-386.

Nguyen, L. T., and J. Molinari, 2015: Simulation of the Downshear Reformation of
a Tropical Cyclone. J. Atmos. Sci., 72, 4529-4551.

Nolan, D. S. 2007: What is the trigger for tropical cyclogenesis. Aust. Meteor. Mag.,
56, 241.

Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of
Typhoon Irving. Mon. Wea. Rev., 125, 1377-1396.

Simpson, J., E. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale
interactions in tropical cyclone genesis. Mon. Wea. Rev., 125,2643-2661.

Tuleya, R. E. 1994: Tropical storm development and decay: Sensitivity to surface
boundary conditions. Mon. Wea. Rev., 122, 291-304.

Willoughby, H. E. 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126,
3053-3067.

Yang, M. J., D. L. Zhang, X. D. Tang, and Y. Zhang, 2011: A modeling study of
Typhoon Nari (2001) at landfall: 2. Structural changes and terrain-induced asymmetries. J. Geophys. Res., 116, D09112.
指導教授 廖宇慶、楊明仁(Yu-Chieng Liou Ming-Jen Yang) 審核日期 2016-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明