博碩士論文 103322049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:178 、訪客IP:18.212.102.174
姓名 李冠宏(Guan-Hong Lee)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 最終處置場近場環境對緩衝材料回脹壓力之影響
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在最終處置場近場環境中主要受到熱–水力–力學–化學效應影響(即T-H-M-C效應)。這些耦合效應對緩衝材料的劣化有直接的影響,因此不同近場環境因子對緩衝材料回脹行為之影響必須加以分析釐清。
本研究將SPV 200膨潤土壓實至乾密度為1600 kg/m^3狀態,針對衰變熱、地下水化學、pH值與垂直應力效應,進行單向度回脹試驗、回脹壓力與水力傳導試驗,從研究結果顯示:
(1)SPV 200膨潤土於65℃ 水–熱環境下,造成膨潤土回脹壓力迅速發展,且回脹壓力隨著溫度提高而降低;
(2)SPV 200膨潤土於氯化鈉與氯化鈣環境下,回脹壓力隨著陽離子濃度提升而降低,其中氯化鈉效應下對回脹壓力影響較大;
(3)當 SPV 200膨潤土處於pH值<13溶液中,對回脹壓力沒有明顯影響;
(4)由XRD與ICP分析結果顯示,SPV 200膨潤土於氫氧化鈉[1.0M]系統中,蒙脫石與石英礦物有減少趨勢,且矽離子有明顯溶出現象;
(5)單向度回脹試驗顯示,垂直應力提升時,壓縮了膨潤土的回脹。但膨潤土於海水效應中,垂直應力越高,使得陽離子對膨潤土回脹影響程度越小。
摘要(英) In a final disposal site for radioactive wastes, the evolution of the near field is mainly controlled by the thermo-hydro-mechanical-chemical (T-H-M-C) effects. The coupling effects have a direct impact on the deterioration of the buffer material, and therefore the effects of various near field environmental factors on the swelling behavior of the buffer material must be analyzed.
In this study, SPV 200 bentonite compacted to a dry density of 1600 kg/m^3 was tested for one-dimensional swelling pressures, with considerations on simulation decay heat, groundwater chemistry, pH environment, and the vertical stress effect. Results from the study show:
(1) SPV 200 bentonite at 65℃ water - heat solution exhibited a rapid development of bentonite swelling pressures, and increases in temperature cause decreases in swelling pressure;
(2) in NaCl and CaCl2 solution, the swelling pressure of bentonite decreases with increasing cation concentration, and the effect of NaCl on swelling pressure is more pronounced;
(3) at solutions with pH < 13, no significant reduction on swelling pressure was observed;
(4) as illustrated by XRD and ICP analysis, SPV 200 bentonite in NaOH [1.0M] solution shows decreases in montmorillonite and quartz minerals, while the Si ions exhibits obvious increase;
(5) one-dimensional swelling tests showed that the amount of swelling is highly dependent on the vertical stresses applied on bentonite.
關鍵字(中) ★ 緩衝材料
★ 回脹壓力
★ SPV 200 膨潤土
★ 回脹行為
關鍵字(英) ★ buffer material
★ swelling pressures
★ SPV 200 bentonite
★ swelling behavior
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 X
表目錄 XV
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法與範圍 2
第二章 文獻回顧 5
2.1 用過核子燃料最終處置之設計概念 5
2.2 緩衝材料之功能需求 6
2.3 膨潤土基本特性 10
2.3.1 膨潤土結晶構造 10
2.3.2 膨潤土水合作用 11
2.3.3 分散與絮凝結構 12
2.3.4 pH值對膨潤土結構效應 13
2.4 擴散雙層理論 14
2.4.1 溫度對擴散雙層厚度之影響 16
2.4.2 電解質濃度及離子價數對擴散雙層厚度之影響 16
2.4.3 pH值對擴散雙層厚度之影響 17
2.4.4 陽離子水化半徑對擴散雙層厚度之影響 18
2.5 膨潤土回脹行為 19
2.5.1 壓實膨潤土之結構 19
2.5.2 膨潤土自由回脹行為 20
2.5.3 膨潤土定體積回脹行為 22
2.6 國外最終處置場近場環境分析 23
2.6.1 溫度效應對回脹壓力之影響 24
2.6.2 地下水化學效應對回脹壓力之影響 28
2.6.3 pH值效應對回脹壓力之影響 31
2.6.4 垂直應力效應對回脹壓力之影響 34
第三章 研究計劃 39
3.1 研究內容與架構 39
3.2 試驗材料 40
3.2.1 Volclay SPV 200膨潤土 40
3.3 基本物理性質分析方法 41
3.4 化學性質分析方法 41
3.4.1 化學成分分析 41
3.4.2 陽離子交換容量分析 41
3.4.3 X光繞射分析 42
3.4.4 Field Emission SEM分析 43
3.4.5 pH值量測 44
3.4.6 回脹潛能試驗 45
3.5 回脹壓力與水力傳導試驗 45
3.5.1 回脹壓力與水力傳導試驗方法 46
3.5.2 緩衝材料試體製作 47
3.6 回脹壓力與水力傳導試驗系統配置 49
3.6.1 定體積回脹壓力試驗 49
3.6.2 水力傳導試驗 51
3.7 模擬近場環境之試驗方法 52
3.7.1 衰變熱效應 52
3.7.2 地下水化學效應 52
3.7.3 pH值效應 53
3.8 單向度回脹試驗 53
3.8.1 單向度回脹試驗方法 54
3.8.2 緩衝材料試體製作 55
3.9 單向度回脹試驗系統配置 56
第四章 試驗結果與分析 57
4.1 膨潤土基本物理性質分析 57
4.2 膨潤土化學性質分析 58
4.2.1 化學組成分析 59
4.2.2 陽離子交換容量分析 59
4.2.3 X光繞射分析 61
4.2.4 膨潤土pH值與回脹潛能分析 61
4.3 不同近場環境之回脹潛能試驗結果 62
4.4 回脹壓力與水力傳導試驗結果 65
4.4.1 衰變熱效應–回脹壓力試驗結果 65
4.4.2 地下水化學效應–回脹壓力試驗結果 70
4.4.2.1 不同陽離子效應對回脹壓力之影響 74
4.4.2.2 陰離子效應對回脹壓力之影響 75
4.4.2.3 陽離子交換容量分析 76
4.4.2.4 X光繞射分析 79
4.4.3 pH效應–回脹壓力試驗結果 81
4.4.3.1 外觀分析 85
4.4.3.2 SEM分析 87
4.4.3.3 膨潤土pH值切片分析 92
4.4.3.4 陽離子可交換容量分析 95
4.4.3.5 X光繞射分析 98
4.4.4 水力傳導試驗 100
4.5 單向度回脹試驗 101
4.5.1 Deionized water系統–單向度回脹試驗結果 102
4.5.2 模擬海水系統–單向度回脹試驗結果 103
第五章 結論與建議 105
5.1 結論 105
5.2 建議 108
參考文獻 109
參考文獻 王明光,(2001),「環境土壤化學」,五南圖書出版。
王欣婷,(2003),「緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究」,國立中央大學土木工程研究所碩士論文,中壢。
台灣電力公司,(2000),「我國用過核燃料長程處置全程工作規劃書(2000年版)」,第3-2頁。
莊文壽、洪錦雄、董家寶,(2000),「深層地質處置技術之研究」,核研季刊,第三十七期,第44-54頁。
陳文泉,(2004),「高放射性廢棄物深層地質處置緩衝材料之回脹行為研究」,國立中央大學土木工程研究所博士論文,中壢。
張皓鈞,(2015),「低放射性廢棄物最終處置場工程障壁材料於未飽和/飽和環境下之長期穩定性研究」,國立中央大學土木工程研究所博士論文,中壢。
趙杏媛、張有瑜,(1990),「黏土礦物與黏土礦物分析」,海洋出版社,北京。
鈴木英明、中間茂雄、藤田朝雄、今井久、九石正美,(2012),「熱-水-応力-化学連成解析による緩衝材の地球化学環境の変遷に着目したニアフィールド長期挙動評価の一例」,原子力バックエンド研究,日本。
Abdullah, W.S., Alshibli, K.A., and Al-Zou′bi, M.S. (1999). “Influence of pore water chemistry on swelling behavior of compacted clays.” Applied Clay Science, 15, 447-462.
Åkesson, M., Jacintao, A.C., Gatabin, C., Sanchez, M., and Ledesma, A. (2009). “Benonite THM behaviour at high temperatures: experimental and numerical analysis.” Géotechnique, 59(4), 307-318.
ASTM D422-63. (2007). “Standard test method for particle-size analysis of soils.” PA.
ASTM D584-10. (2010). “Standard test method for wool content of raw wool – laboratory scale.” PA.
ASTM D1141-98. (2013). “Standard practice for the preparation of sub-stitute ocean water.” PA.
ASTM D2216-10. (2010). “Standard test methods for laboratory deter-mination of water (moisture) content of soil and rock by mass.” PA.
ASTM D4318-10. (2010). “Standard test methods for liquid limit, plastic limit, and plasticity index of soils.” PA.
ASTM D4972-13. (2013). “Standard test method for pH of soils.” PA.
ASTM D5890-11. (2011). “Standard test method for swell index of clay mineral component of geosynthetic clay liners.” PA.
Bauer, A., Lanson, B., Ferrage, E., Emmerich, K., Taubald, H., Schild, D., and Velde, B. (2006). “The fate of smectite in KOH solutions.” American Mineralogist, 91(8-9), 1313-1322.
Bag, R. (2011). “Coupled thermo-hydro-mechanical-chemical behaviour of MX80 bentonite in geotechnical applications.” PhD Thesis, Cardiff University, Cardiff.
Bohn, H.L., McNeal, B.L., and O’Connor, G.A. (1985). Soil Chemistry, 2nd ed., John Wiley & Sons Inc., New York.
Börgesson, L., Chijimatsub, M., Fujitab, T., Nguyenc, T.S., Rutqvistd, J., and Jinge, L. (2001). “Thermo-hydro-mechanical characterisation of a bentonite-based buffer material by laboratory tests and numerical back analyses.” International Journal of Rock Mechanics and Mining Sciences, 38, 95-104.
Chen, Y.G., Zhu, C.M., Ye, W.M., Cui, Y.J., and Chen, B. (2016). “Effects of solution concentration and vertical stress on the swelling behavior of compacted GMZ01 bentonite.” Applied Clay Science, 124-125, 11-20.
Claret, F., Bauer, A., Schäfer, T., Griffault, L., and Lanson, B. (2002). “Experimental investigation of the interaction of clays with high pH solutions: a case study from the Callovo-Oxfordian formation, Meuse-Haute Marne underground laboratory (France).” Clays and Clay Minerals, 50, 633-646.
Cuevas, J., Villar, M., Martyn, M., Cobena, J.C., and Leguey, S. (2002). “Thermohydraulic gradients on bentonite: distribution of soluble salts, microstructure and modification of the hydraulic and mechanical behaviour.” Applied Clay Science, 22, 25-38.
Cuevas, J., Fernandez, R., Sanchez, L., Vigil de la Villa, R., Rodriiguez, M., and Leguey, S. (2007). “Reactive diffusion front driven by an alkaline plume in compacted Mg homoionic bentonite.” Clays in Natural & Engineered Barriers for Radioactive Waste Confinement: International Meeting, Lille, France, 509-510.
Cuisinier, O., Masrouri, F., Pelletier, M., Villieras, F., and Mosser-Ruck, R. (2008). “Microstructure of a compacted soil submitted to an alkaline plume.” Applied Clay Science, 40, 159-170.
Delage, P., Marcial, D., Cui, Y.J., and Ruiz, X. (2006). “Ageing effects in the compacted bentonite: a microstructure approach.” Géotechnique, 56(4), 291-304.
EASAC. (2014). “Management of spent nuclear fuel and its waste.” EASAC policy report no. 23, European Academies’ Science Advisory Council (EASAC), Brussels.
Fernández, A.M., and Villar, M.V. (2010). “Geochemical behaviour of a bentonite barrier in the laboratory after up to 8 years of heating and hydration.” Applied Geochemistry, 25, 809-824.
Fernández, R., Rodríguez, M., Vigil de la Villa, R., and Cuevas, J. (2010). “Geochemical constraints on the stability of zeolites and C–S–H in the high pH reaction of bentonite.” Geochimica and Cosmochimica Acta, 74, 890-906.
Gens, A., Vaunt, J., Garite, B., and Wileveau, Y. (2007). “In situ behaviour of a stiff layered clay subject to thermal loading: observations and interpretation.” Géotechnique, 57(2), 207-228.
Gens, A., Sanchez, M., Guimaraes, L., Do, N., Alonso, E.E., Lloret, A., Olievella, S., Villar, M.V., and Huertas, F. (2009). “A full-scale in situ heating test for high-level nuclear waste disposal:observations, analysis and interpretation.” Géotechnique, 59(4), 377-399.
Gomez-Esipna, R., and Villar, M.V. (2010). “Geochemical and minera-logical changes in compacted MX-80 bentonite submitted to heat and water gradients.” Applied Clay Science, 47, 400-408.
Grim, R. E., and Guven, N. (1978). Bentonites, Geology, Mineralogy, Properties and Uses, Elsevier, Amsterdam.
Iwata, S., Tabuchi, T., and Warkentin, B.P. (1995). Soil-Water Interactions: Mechanisms and Applications, 2nd Edition, Marcel Deeker, New York.
Karnland, O., Olsson, S., Nilsson, U., and Sellin, P. (2007). “Experi-mentally determined swelling pressures and geochemical interactions of compacted Wyoming bentonite with highly alkaline solutions.” Physics and Chemistry of the Earth, 32, 275-286.
Kaufhold, S., Dohrmann, R. (2011). “Stability of bentonites in salt solu-tions III – Calcium hydroxide.” Applied Clay Science, 51, 300-307.
Komine, H., Yasuhara, K., and Murakami, S. (2009). “Swelling cha-racteristics of bentonites in artificial seawater.” Can. Geotech. J., 46, 177-189.
Lambe, T.W. (1958). “The structure of compacted clay.” Journal of the Soil Mechanics and Foundations Division, 84(SM2), 1-35.
Lee, J.O., Park, J.H., and Cho, W.J. (2008). “Engineering-scale test on the thermal-hydromechanical behaviors in the clay barrier of a HLW repository.” Annals of Nuclear Energy, 35, 1386-1396.
Lide, D.R. (2001). CRC Handbook of Chemistry and Physics, 82nd ed., CRC Press, New York.
Lloret, A., Villar, M.V., Sanchez, M., Gens, A., Pintado, X., and Alonso, E.E. (2003). “Mechanical behaviour of heavily compacted bentonite under high suction changes.” Géotechnique, 53(1), 27-40.
Marcial, D., Delage. P., and Cui. Y.J. (2002). “On the high stress com-pression of bentonites.” Canadian Geotechnical Journal, 39, 812-820.
Martín, M., Cuevas, J., and Leguey, S. (2000). “Diffusion of soluble salts under a temperature gradient after the hydration of compacted bentonite.” Applied Clay Science, 17, 55-70.
Melkior, T., Mourzagh, D., Yahiaoui, S., Thoby, D., Alberto, J.C., Brouard, C., and Michau, N. (2004). “Diffusion of an alkaline fluid through clayey barriers and its effect on the diffusion properties of some chemical species.” Applied Clay Science, 26, 99-107.
Mishra, M., Schanz, T., and Tripathy, S. (2008). “A column device to study THM behaviour of expansive soils.” Proceddings of 12th International conference of International Association for Computer Methods in Advances in Geomechanics, 1149-1156.
Mitchell, J.K. (1993). Fundamentals of Soil Behavior, 2nd Edition, John Wiley & Sons Inc., New York.
Montes-H, G., Fritz, B., Clement, A., and Michau, N. (2005). “Modelling of geochemical reactions and experimental cation exchange in MX-80 bentonite.” J. Environ. Manage., 77, 35-46.
Mosser-Ruck, R., and Cathelineu, M. (2004). “Experimental transfor-mation of Na, Ca smectite under basic conditions at 150 °C.” Applied Clay Science, 26, 259-273.
Nagra. (1995). “Column experiments: results of experiments and mode-lling.” NTB Report 95-70, Baden, Switzerland.
Ochs, M., Lothenbach, B., Shibata, M., and Yui, M. (2004). “Ther-modynamic modeling and sensitivity analysis of porewater chemistry in compacted bentonite.” Physics and Chemistry of the Earth, 29, 129-136.
Posiva. (2012). “YJH-2012 Nuclear waste managementat Olkiluoto and Loviisa power plants: review of current status and future plans for 2013-2015.” Posiva Oy, Eurajoki.
Pusch, R. (1980). “Swelling pressure of highly compacted bentonite.” SKB Technical Report TR-80-13, Stockholm.
Pusch, R. (1982). “Mineral-water interactions and their influence on the physical behaviour of highly compacted Na bentonite.” Canadian Geotechnical Journal, 19, 381-387.
Pusch, R., and Karnland, O. (1988). “Hydrothermal effects on mont-morillonite: A preliminary study.” SKB Technical Report TR-88-15, Clay Technology AB, Stockholm.
Pusch, R., Karlnland, O., and Hokmark, H. (1990). “GMM-a general microstructural model for qualitative and quantitative studies of smectite clays.” SKB Technical Report TR-90-43, Stockholm, Sweden.
Pusch, R., (2001). “Experimental study of the effect of high porewater salinity on the physical properties of a natural smectitic clay.” SKB Technical Report TR-01-07, Stockholm.
Pusch, R., and Moreno, L. (2001). “Saturation and permeation of buffer clay.” Proceedings of 6th international workshop on Key Issues in Waste Isolation Research, Paris, 71-81.
Pusch, R., Zwhar, H., Gerber, R., and Schomburg, J. (2003). “Interaction of cement and smectitic clay – theory and practice.” Applied Clay Science, 23, 203-210.
Pintado, X., Ledesma, A., and Lloret, A. (2002). “Backanalysis oh therm-ohydraulic bentonite properties from laboratory tests.” Engineering Geology, 64, 91-115.
Ramirez, S., Cuevas, J., Vigil, R., and Leguey, S. (2002). “Hydrothermal alteration of “La Serrata” bentonite (Almeria, Spain) by alkaline solutions.” Applied Clay Science, 21, 257-269.
Samper, J., Juncosa, R., Navarro, V., Delgado, J., Montenegro, L., and Vázquez, A. (2001). “Coupled thermo-hydro-geochemical models of engineered barrier systems: The Febex Project.” Material Research Society, Sydney, 1-13.
Samper, J., Zheng, L., Montenegro, L., Fernandez, A.M. and Rivas, P. (2008). “Coupled thermo-hydro-chemical models of compacted bentonite after FEBEX in situ test.” Applied Geochemistry, 23, 1186-1201.
Sato, T., Kuroda, M., Yokoyama, K., and Nakayama, S. (2002). “Effect of pH on smectite dissolution rates under alkaline conditions.” Clays in Natural and Engineered Barriers for Radioactive Waste Confinement: International Meeting, Reims, France, 11-12.
Savage, D., Bateman, K., Hill, P., Hughes, C., Milodowski, A., Pearce, J., Rae, E., and Rochelle, C. (1992). “Rate and mechanism of the reaction of silicates with cement pore fluids.” Applied Clay Science, 7, 33-45.
Savage D., and Benbow S. (2007). “Low-pH Cements.” SKI Report 2007:32, Swedish Nuclear Power Inspectorate (SKI), Stockhoolm, Sweeden.
Savage, D., Benbow, S., Watson, C., Takase, H., Ono, K., Oda, C., and Honda, A. (2010). “Natural systems evidence for the alteration of clay under alkaline conditions: an example from Searles Lake, California.” Applied Clay Science, 47, 72-81.
Selvadurai, A.P.S. (1996). “Heat-induced moisture movement in a clay barrier. I. Experimental modeling of borehole emplacement.” Engineering Geology, 41, 239-256.
Shirazi, S.M., Wiwat, S., Kazama, H., Kuwano, J., and Shaaban, M.G. (2011). “Salinity effect on swelling characteristics of compacted bentonite.” Environment Protection Engineering, 37(2), 65-74.
Sivapullaiah, P.V., Sridharan, A., and Stalin, V.K. (1996). “Swelling behaviour of soil-bentonite mixtures.” Canadian Geotechnical Journal, 33, 808-814.
SKB TR11-01. (2011). “Long-term safety for the final repository for spent nuclear fuel at Forsmark: Main report of the SR-Site project Volume I.” SKB Technical Report TR-11-01, Svensk Kärnbränslehantering AB.
Szilvásszy, Z. (1984). Ch 5. Soils engineering for design of ponds, canals and dams in aquaculture, Foodand Agricultural Organization, Research Centre for Water Resources Development, Budapest, Hungary.
Turrero, M.J., Escribano, A., Torres, E., and Martin, P.L. (2007). Con-crete/Febex bentonite interaction: preliminary results on short-term column experiments.” Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, International Meeting, Lille, France.
Villar, M.V., Cuevas, J., and Martin, P.L. (1996). “Effects of heat/water flow interaction on compacted bentonite: Preliminary results.” Engineering Geology, 41, 257-267.
Villar, M.V., and Lloret, A. (2004). “Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite.” Applied Clay Science, 26, 337-350.
Villar, M.V., Sánchez, M., and Gens, A. (2008). “Behaviour of a bentonite barrier in the laboratory: experimental results up to 8 years and numerical simulation.” Physics and Chemistry of Earth, 33, 476-485.
Ye, W.M., Zheng, Z.J., Chen, B., Chen, Y.G., Cui, Y.J., and Wang, J. (2014). “Effects of pH and temperature on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite.” Applied Clay Science, 101, 192-198.
Yong, R.N., and Benno, P.W. (1975). Soil Properties and Behavior, Elsevier, NewYork.
Yong, R.N., Mohammed, A.M.O., Shooshapasha, I., and Onofrei, C. (1997). “Hydrothermal performance of unsaturated bentonite-sand buffer material.” Engineering Geology, 47, 351-365.
Zhu, C.M., Ye, W.M., Chen, Y.G., Chen, B., and Cui, Y.J. (2013). “Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite.” Engineering Geology, 166, 74-80.
指導教授 黃偉慶(Wei-Hsing Huang) 審核日期 2016-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明