博碩士論文 103621017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:18.222.10.9
姓名 李孟澤(Meng-Tze Lee)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 台灣北部地區長期統計之不同季節與不同降雨型態之雨滴粒徑為物理特徵分析
(Microphysical characteristics of raindrop size distribution in different seasons and precipitation type in Northern Taiwan)
相關論文
★ 宜蘭地區秋冬季降雨特性之研究★ 台灣地區午後對流降水特性之分析
★ 台灣梅雨季中尺度對流系統之數值模擬研究-TAMEX IOP 8 個案★ 利用整合探空系統分析南海北部大氣邊界層特性之研究
★ 中尺度波譜模式對梅雨期豪雨個案模擬之研究★ 宜蘭地區秋冬季豪大雨特性之研究
★ 台灣東南部地區局部環流與邊界層特性之研究★ 台灣東南部地區複雜地形局部環流的模擬研究
★ 宜蘭地區豪雨個案之研究★ 台灣北部地區雨滴粒徑分佈特性與降雨估計之探討
★ 冬季雹暴個案之分析與模擬★ 伴隨敏督利颱風的強烈西南氣流引發豪大雨之個案探討
★ 利用整合探空系統分析台灣東南部地區大氣邊界層特性之研究★ 桃芝颱風(2001)數值模擬研究:颱風路徑與結構之模擬與分析
★ 利用雨滴譜儀分析不同降水系統之微物理特性研究★ 台灣北部地區不同季節以及不同降水型態的雨滴粒徑分布特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣位於太平洋西側、歐亞大陸東側的熱帶與副熱帶季風地區,春夏季轉換時、梅雨鋒面、夏季的颱風和午後熱對流常常帶來豪大雨,在加上台灣地形陡峭,容易造成水災、土石流,因此準確預估降水對防災有極大的幫助。雷達回波與降雨率的關係廣泛被用來估計降水的方法之一,可以用在大範圍降水估計;缺點則是空間上的雨滴粒徑變化太大,相同的回波值對應的降雨率範圍很廣, 兩者並非一對一的關係,因此了解雨滴粒徑分佈的特性將有助於改善降水估計。不同的地區、不同的降水型態,都有可能造成雨滴粒徑分佈不同,以及分析比較降水積分參數有助於了解不同的降水特性。

本研究使用的資料來源為中央大學Joss-Waldvogel disdrometer(JWD)觀測資料與中央氣象局(CWB)三維雷達回波合成資料(QPESUMS),統計的區間為2005年1月至2014年12月間。由標準化的gamma分布顯示,平均直徑Dm (Mass-weighted average diameter)於夏季有最高值,而平均Nw(normalized intercept parameter)最高值則出現在冬季; 透過雷達回波在高度上的變化得知垂直發展影響DSD (drop size distribution)在不同季節的結果。此外,台灣北部降雨率多集中於20mm/hr以下(層狀性降水),本篇研究使用雷達回波區分對流性與層狀性降雨,移除層狀性降水主導的因素。所有季節的層狀降雨皆有相近的DSD分布結構,但對流降雨的DSD則是偏向海洋型對流; 平均Dm在對流降雨系統有較高值,而平均log10Nw在層狀系統內有較高值,透過 Contoured frequency by altitude diagrams (CFADs)發現垂直發展主導DSD的變異性。
摘要(英) Drop size distribution (DSD) is a metric widely used in meteorology and hydrology. Taiwan is located in a subtropical monsoon area in the west Pacific Ocean off the coast of East Asia. Enormous quantities of rainfall during the transition season often cause flooding and mudslides. Accurate rainfall prediction can help to alleviate the effects of such rainfall events. DSD varies with regard to the type of rain as well as its spatial distribution. Radar reflectivity-rate of rainfall (Z-R) relations are strongly dependent on DSD variations, which means that it is important to analyze the DSD in various seasons as well as in various types of rain.

Between January 2005 and December 2014, DSD data was collected using a Joss-Waldvogel Disdrometer (JWD) to analyze variations in the Gamma parameters of raindrop spectra at NCU (24°58′6"N 121°11′27"E). The normalized Gamma distribution of DSD revealed that the highest mean Dm (Mass-Weighted Average Diameter) values were in summer, whereas the highest mean log10Nw (normalized intercept parameter) values were in winter. Vertical structures detected in radar reflectivity profiles dominate the results of seasonal DSD. Furthermore, most of the rain falling at less than 20 mm/hr (stratiform precipitation) occurs in Northern Taiwan. In this study, we used radar reflectivity to differentiate between convective and stratiform systems. It was discovered that the mean Dm value is higher in convective systems, whereas the mean log10Nw value is higher in stratiform systems. The structure of DSD in stratiform systems remains constant in all seasons; however, convection is similar to maritime type. Contoured Frequency by Altitude Diagrams (CFADs) revealed that vertical structures dominate DSD in various types of precipitation.
關鍵字(中) ★ 雨滴粒徑
★ 雷達
★ 雨滴譜儀
關鍵字(英) ★ Drop size distribution
★ Radar
★ JWD
論文目次 摘要 i
Abstract ii
致謝 iii
Table of Contents iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 Geographical environment in Taiwan 1
1.2 Seasons in Taiwan 1
1.3 Precipitation process 2
1.3.1 Rain types: warm rain and cold rain 3
1.3.2 Microphysical process 4
1.4 Main purpose of the study 7
Chapter 2 Data and Method 8
2.1 Disdrometer 8
2.1.1 Data collection 8
2.1.2 Instrument introduction 8
2.1.3 Data quality control 9
2.1.4 Calculation of drop size distribution 9
2.1.5 Gamma distribution 10
2.1.6 Normalization of Gamma distribution 11
2.2 Z-R relation 13
2.3 Radar data 13
2.4 Classification of stratiform and convective precipitation 16
2.5 Radiosonde data 17
Chapter 3 Results and discussion 18
3.1 Overview of DSD 19
3.2 Seasonal variation 21
3.3 Comparison of stratiform and convective 23
3.4 Rainfall integral parameter Z-R 25
Chapter 4 Conclusion and future work 27
4.1 Conclusion 27
4.2 Future work 28
References 29
Table 33
Figure 39
參考文獻 Beard KV, Ochs HT. 1993. Warm-rain initiation: an overview of microphysical mechanisms. J. Appl. Meteorol. 32:608–25
Bringi, V. N., and V. Chandrasekar, J. Hubbert, E. Gorgucci, W. Randeu, and M. Schoenhuber,2003: Raindrop size distribution in different climateregimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354–365.
Chaing, Y.-C, 2010: The characteristic of drop size distribution of Mei-Yu season in 2009. Master Thesis, National Central University, 107 pages. (in Chinese)
Chang, W.-W, 2002: Using disdrometer to analyze the Drop size distribution (Typhoon Nari). Master Thesis, National Central University, 95 pages. (in Chinese)
——, T.-C. Wang, and P.-L. Lin, 2009. Characteristics of the raindrop size distribution and drop shape relation in Typhoon systems in the western Pacific from the 2D Video Disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Tech., 26, 1973-1993
Chen Baojun, Yang Jun, and Pu Jianping, 2013: Statistical characteristics of raindrop size distribution in the Mei-yu season observed in eastern China. J. Meteor. Soc. Japan. Ser. II, 91, 215–227.
Chen, C.-S., and Y.-L. Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 1323–1341
Chen, Y.-C., 2013: Comparison in the frontal system of strong precipitation of drop size distribution in northern Taiwan. Master Thesis, National Central University, 111 pages. (in Chinese)
Chien, C.-L, 2006: The characteristic of drop size distribution in different season and precipitation types in northern Taiwan. Master Thesis, National Central University, 119 pages. (in Chinese)
Gamache, J. F., and R. A. Houze, Jr., Mesoscale air motions associated with a tropical squall line, Mon. Weather Rev., 110,118-135, 1982
Glickman, T. S., (Ed.), Glossary of Meteorology, Am. Meteorol. Soc., 855 pp, 2000
Gunn, K. L. S., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. Meteorology, 6, 243–251.
Houze, R. A., Jr.,1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 2179–2196.
Hsu, Y.-C, 2005: The characteristic of Drop size distribution of northern Taiwan and rainfall estimation. Master Thesis, National Central University, 89 pages. (in Chinese)
Islam, T., M. A. Rico-Ramirez, M. Thurai, and D. Han, 2012: Characteristics of raindrop spectra as normalized gamma distribution from a Joss-Waldvogel disdrometer. Atmos. Res., 108, 5773.
Jayalakshmi, J., Reddy, K.K., 2014. Raindrop size distributions of south west and north east monsoon heavy precipitations observed over Kadapa (14o 4′ N, 78o 82′ E), a semiarid region of India. Curr. Sci. 107 (8), 1312–1320
Kozu, T., and K. Nakamura, 1991: Rainfall parameter estimation from dual-radar measurements combining reflectivity profile and path integrated attenuation. J. Atmos. Oceanic Technol., 8, 259–270
——, K. K, Reddy, S.Mori, M. Thurai,J.T. Ong, D. N.Rao,and T. Shimomai, 2006: Seasonal and diurnal variations of raindrop size distribution Asian monsoon region, J. Meteon Soc. krpan, 84A, 195-209
Krishna, M., K. K, Reddy, B. K., Seela, R. Shirooka, P.-L. Lin., C.-J. Pan., 2016: Raindrop size distribution of easterly and westerly monsoon precipitation observed over Palau islands in the Western Pacific Ocean. Atmospheric Research, 174–175, 41–51
Lau, K. M. and Wu, H. T., 2003: Warm rain processes over tropical oceans and climate implications, Geophys. Res. Lett., 30, doi:10.1029/2003GL018 567
Lu, Y.-C., 2012: Observation of rain drop size distribution during the invaded time of typhoon Fanapi in Taiwan. Master Thesis, National Central University, 85 pages. (in Chinese)
Maki, M., T. D. Keenan, Y. Sasaki, and K. Nakamura, 2001: Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia. J. Appl. Meteor., 40, 1393-1412
Mao, Y.-Y, 2007: The characteristic of rain drop size distribution between convective and stratiform precipitation in northern Taiwan. Master Thesis, National Central University, 101 pages (in Chinese)
Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J.Meteor., 5, 154-166
Marzuki, M., Hashiguchi, H., Yamamoto, M.K., Mori, S., Yamanaka, M.D., 2013c. Regional variability of raindrop size distribution over Indonesia. Ann. Geophys. 31, 1941–1948.
Sauvageot, H., and J.-P. Lacaux, 1995: The shape of averaged raindrop size distributions. J. Atmos. Sci., 52, 1070–1083.
Schumacher, C., and R. A. Houze, The TRMM precipitation radar view of shallow, isolated rain, J. Appl. Meteorol., 42, 1519 – 1524, 2003.
Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 1978– 2007.
Tenório, R.S., da Silva, Cristina, Moraes, M., Sauvageot, H., 2012. Raindrop size distribution and radar parameters in coastal tropical rain systems of northeastern Brazil. J. Appl. Meteorol. Climatol. 51, 1960–1970.
Testud, J., S. Oury, P. Amayenc, and R. A. Black, 2001: The concept of ‘‘normalized’’ distributions to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor.,40, 1118–1140.
Thompson, J. E., S. A. Rutledge, B. Dolan, and M. Thurai, 2015: Drop size distributions and radar observations of convective and stratiform rain over the equatorial Indian and west Pacific Oceans. J. Atmos. Sci., 72, 4091–4125
Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355–371
——, ——, C. R. Williams, W. L. Ecklund, and K. S. Gage, 1999: Tropical rainfall associated with convective and stratiform clouds:Intercomparison of disdrometer and profiler measurements. J. Appl.Meteor., 38, 302–320.
Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 1764–1775
——, and D. Atlas, 1984: Assessment of the contribution of differential polarization to improved rainfall measurements. Radio Sci., 19, 49–57.
——, ——, 2007: Microphysics of raindrop size spectra: Tropical continental and maritime storms. J. Appl. Meteor. Climatol., 46, 1777–1791.
Waldvogel, A., 1974: The No jump of raindrop spectra. J. Atmos. Sci., 31, 1067–1078
Wu, H.-S, 2006: By using distrometer to analyze the microphysical characteristic in different precipitation types. Master, Thesis of National Central University, 101 pages (in Chinese)
Zhang, J., K. Howard, and J. J. Gourley, 2005: Constructing threedimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J. Atmos. Oceanic Technol., 22, 30–42.
指導教授 林沛練(Pay-Liam Lin) 審核日期 2016-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明