博碩士論文 103322609 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.149.27.7
姓名 林佳翠(LINGGA FADYA PUTRI)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱
(Finite Element Analysis of Flexural Strengthening of Reinforced Concrete Beam by FRP)
相關論文
★ 貼片補強構件之層間應力分析★ 軌道不整檢測及識別方法
★ 混凝土結構分析之三維等效單軸組成材料模型★ 卵形顆粒法向與切向接觸之等效線性彈簧值之推導與驗證
★ 以四面體離散化多面體系統之接觸分析與模擬★ 軌道車輛三維動態脫軌係數之在線量測理論
★ 向量式DKMT厚殼元推導與模擬★ 向量式預力混凝土二維剛架元之數值模擬與驗證
★ 向量式有限元應用於懸索橋非線性動力分析★ 蛋形顆粒群之流固耦合分析
★ 複合版梁元素分析模型之橋梁動態識別法★ 三維等效單軸應變與應力之材料組成模型
★ 人行吊橋的現有內力評估及動力分析★ 薄殼結構非線性運動之向量式有限元分析法
★ 雷射掃描技術於鋼軌磨耗之檢測★ 動態加載下的等效單軸應變與 應力材料組成模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近來愈多鋼筋混凝土使用鋼纖維聚合物(FRP)以提高強度,並增加極限載重,不讓此達到破壞行為。此研究便是利用LS-DYNA軟體,以有限元(FE)分析未補強與FRP補強鋼筋混凝土樑的所有行為,並與實驗做比對。其中,未補強樑有四個試樣,主要分為兩種形式─完全粘接式與粘結滑移式,並在靜載重下,施加彎矩力在四個節點上。荷載-撓度曲線、開裂擴展與FRP剝離中,將數值結果與分析的文獻相比較,發現未補強樑之完全粘接的數值模擬與文現相同,且更易模擬分析,但分析模型時間卻比粘結滑移式久。然而,在有限元建模的FRP補強鋼筋混凝土樑卻是有問題的。在LS-DYNA中,以有限元建模的FRP材料在粘結模型上很難取得適當的精確度與可靠度來驗證頸縮接觸(意謂FRP-混凝土的粘結)。雙懸臂梁(DCB)和終端彎曲(ENF)的模擬可以分析模型I與II,在頸縮接觸的分層斷裂擴展行為。從這些測試中,發現模型I是可靠的,而模式II是不準確的。進一步以抗剪切試驗,驗證FRP混凝土的的粘結性能,得到的數值模擬與實驗結果之間的行為類似。但需要更深的調查,因為其兩者間的偏差超過20%。
摘要(英) Recently, the use of Fiber Reinforced Polymer (FRP) in the strengthening of Reinforced Concrete (RC) has become popular to increase the ultimate load carrying capacity of RC, but it also has unwanted failures. In this research, Finite Element (FE) analysis using LS-DYNA software was conducted with the aim of investigating overall behavior of the un-strengthened and FRP-strengthened beam which experimentally tested by Wang et al. There are four specimens of un-strengthened beams which divide into 2 major types i.e. prefect bond and bond slip model which were arranged and tested under static loading of four point bending loads. The numerical result in terms of load-deflection curve, crack propagation, and FRP debonding were discussed and compared with experimental and analytical literature. The numerical simulation of un-strengthened beam reveals that perfect bond type has identical behavior with experimental result, easier to be simulated, but less efficient in running time the model than bond slip type. Whereas, conducting of FRP-strengthened beam in the finite element modeling has a problem. Literally, the FE test of FRP material exhibit in accurate and reliable results compared with analytical calculation. But, it is quite hard to obtain the proper fundamental concept model in order to validate the tie-break contact (represent bond between FRP-concrete) modeling in LS-DYNA. The simulation of double cantilever beam (DCB) and end-notched flexure (ENF) are conducted to analyze the progressive growth of delamination of tie-break contact under Mode I and Mode II fracture, respectively. From these test, it reveals that Mode I fracture is reliable, while Mode II fracture is not accurate. When further validation modeling of bond behavior between FRP-concrete i.e. shear bond test of FRP attached to concrete is conducted. The similar behavior between numerical simulation and experimental result was obtained. But it needed deeper investigation, since the result was not closed enough with deviation between numerical and experimental result can be exceed of 20%.
關鍵字(中) ★ 鋼筋混凝土樑(RC樑)
★ 鋼筋
★ 完全粘結
★ 粘結滑移
★ 鋼纖維聚合物(FRP)
★ 剝離破壞
★ 分層
★ 雙懸臂(DCB)
★ 終端彎曲(ENF)
★ 頸縮
★ LS-DYNA
關鍵字(英) ★ reinforced concrete beam (RC beam)
★ reinforcement bar in concrete
★ perfect bond
★ bond-slip
★ fiber reinforced polymer (FRP)
★ debonding failure
★ delamination
★ double cantilever (DCB)
★ end-notched flexure (ENF
★ tie-break
★ LS-DYNA
論文目次 摘要……………………………………………………………………………………………..i
ABSTRACT……………………………………………………………………………….......ii
ACKNOWLEDGMENT ..................................................................................................... iii
LIST OF CONTENT .......................................................................................................... iv
LIST OF TABLE ............................................................................................................... vii
LIST OF FIGURE .............................................................................................................. ix
NOTATION………………………………………………………………………………….xii
CHAPTER I: INTRODUCTION ........................................................................................ 1
1.1 BACKGROUND .................................................................................................... 1
1.2 RESEARCH OBJECTIVES.................................................................................. 3
1.3 RESEARCH SCOPE AND LIMITATION .......................................................... 4
1.4 OUTLINE OF THESIS ......................................................................................... 4
CHAPTER II: LITERATURE REVIEW ........................................................................... 5
2.1 INTRODUCTION ................................................................................................. 5
2.2 STRESS STRAIN BEHAVIOR OF CONCRETE AND STEEL ......................... 5
2.2.1 Concrete ........................................................................................................... 5
2.2.2 Steel Reinforcement .......................................................................................... 8
2.3 FLEXURAL STRENGTH BEHAVIOR OF RC BEAM.................................... 10
2.4 FLEXURAL STRENGTHENING OF RC BEAM WITH FRP......................... 14
2.5 FLEXURAL FAILURE MODES OF FRP-STRENGTHENED RC BEAM ..... 19
2.6 RIVIEWED OF DEBONDING STRENGTH MODELS ................................... 22
2.7 EXPERIMENTAL REVIEWED ........................................................................ 23
CHAPTER III: FINITE ELEMENT MODELLING IN LS-DYNA ................................ 27
3.1 INTRODUCTION ............................................................................................... 27
3.2 OVERVIEW OF HYPERMESH ........................................................................ 28
v
3.3 OVERVIEW OF LS-DYNA ................................................................................ 29
3.4 MATERIAL CONSTITUTIVE MODELS ......................................................... 29
3.4.1 Concrete ......................................................................................................... 29
3.4.2 Steel Reinforcement ........................................................................................ 33
3.4.3 Fiber Reinforced Polymer ............................................................................... 33
3.4.4 Loading Plate and Support .............................................................................. 36
3.5 BONDING MODEL ............................................................................................ 37
3.5.1 Bonding between Steel and Concrete .............................................................. 37
3.5.2 Epoxy or Concrete – FRP interface ................................................................. 40
3.6 EROSION FEATURE ......................................................................................... 42
3.7 MATERIAL TEST VALIDATION .................................................................... 44
3.7.1 Finite element modelling of Concrete Compression Test and Result ............... 44
3.7.1.1 Single Element Modelling of Concrete Compression Test ........................ 44
3.7.1.2 Structure Modeling of Concrete Compression Test .................................. 47
3.7.2 Finite Element Modeling of Steel Reinforcement Tensile Test ........................ 51
3.7.3 Finite Element Modelling of Composite Element ............................................ 55
3.8 CONTACT MODELING VALIDATION .......................................................... 58
CHAPTER IV: FINITE ELEMENT MODELING DEVELOPMENT OF UN-STRENGTHENED AND FRP-STRENGTHENED RC BEAM ...................................... 64
4.1 INTRODUCTION ............................................................................................... 64
4.2 MODEL GEOMETRY ........................................................................................ 65
4.3 MATERIAL MODELLING ................................................................................ 68
4.4 CONTACT MODELING AND EROSION ........................................................ 70
4.5 BOUNDARY CONDITIONS .............................................................................. 71
4.6 LOADING STRATEGY ...................................................................................... 72
CHAPTER V: RESULTS AND DISCUSSIONS .............................................................. 73
5.1 INTRODUCTION ............................................................................................... 73
vi
5.2 CRACKING BEHAVIOR AND FAILURE MODE OF UN-STRENGTHENED RC BEAMS ..................................................................................................................... 74
5.3 LOAD-DEFLECTION BEHAVIOR OF UN-STRENGTHENED RC BEAMS 85
5.4 RESULT OF FRP-STRENGTHENED RC BEAMS .......................................... 93
CHAPTER VI: CONCLUSIONS AND RECOMMENDATIONS .................................. 96
6.1 CONCLUSIONS .................................................................................................. 96
6.2 RECOMMENDATIONS ..................................................................................... 97
REFERENCES………………………………………………………………………………99
APPENDIX A: SHEAR BOND THEST OF FRP ATTACHED TO CONCRETE ....... 102
參考文獻 Abu-Odeh, A. (2006). Application of new concrete model to roadside safety barriers. Paper presented at the Proc. of the 9th International LS-DYNA Users’ Conference.
ACI, C. (2008). Building code requirements for structural concrete (ACI 318-08) and commentary.
Alfano, G., & Crisfield, M. (2001). Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. International journal for numerical methods in engineering, 50(7), 1701-1736.
Aram, M. R., Czaderski, C., & Motavalli, M. (2008). Debonding failure modes of flexural FRP-strengthened RC beams. Composites part B: engineering, 39(5), 826-841.
Bakis, C. E., Ganjehlou, A., Kachlakev, D. I., Schupack, M., Balaguru, P., Gee, D. J., . . . Gentry, T. R. (2002). Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. Reported by ACI Committee, 440(2002).
Boresi, A. P., Schmidt, R. J., & Sidebottom, O. M. (1993). Advanced mechanics of materials (Vol. 6): Wiley New York.
Brannon, R. M., & Leelavanichkul, S. (2009). Survey of four damage models for concrete. Sandia Laboratories, Albuquerque. Sandia Report No. SAND, 5544.
Buyukozturk, O., Gunes, O., & Karaca, E. (2004). Progress on understanding debonding problems in reinforced concrete and steel members strengthened using FRP composites. Construction and Building Materials, 18(1), 9-19.
Buyukozturk, O., & Hearing, B. (1998). Failure behavior of precracked concrete beams retrofitted with FRP. Journal of composites for construction, 2(3), 138-144.
Chang, F.-K., & Chang, K.-Y. (1987). A progressive damage model for laminated composites containing stress concentrations. Journal of composite materials, 21(9), 834-855.
Chen, W.-F., & Han, D.-J. (2007). Plasticity for structural engineers: J. Ross Publishing.
Elsanadedy, H. M., Almusallam, T. H., Alsayed, S. H., & Al-Salloum, Y. A. (2013). Flexural strengthening of RC beams using textile reinforced mortar–Experimental and numerical study. Composite Structures, 97, 40-55.
Hallquist, J. O. (2007). LS-DYNA keyword user’s manual. Livermore Software Technology Corporation, 970.
Harper, P. W., & Hallett, S. R. (2008). Cohesive zone length in numerical simulations of composite delamination. Engineering Fracture Mechanics, 75(16), 4774-4792.
Head, P. (1996). Advanced composites in civil engineering-a critical overview at this high interest, low use stage of development. Paper presented at the PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCED COMPOSITE MATERIALS IN BRIDGES AND STRUCTURES, ACMBS-II, MONTREAL 1996.
Hollaway, L. C., & Leeming, M. (1999). Strengthening of reinforced concrete structures: Using externally-bonded FRP composites in structural and civil engineering: Elsevier.
Hosseini, A., & Mostofinejad, D. (2013). Experimental investigation into bond behavior of CFRP sheets attached to concrete using EBR and EBROG techniques. Composites Part B: Engineering, 51, 130-139.
100
Kent, D. C., & Park, R. (1971). Flexural members with confined concrete. Journal of the Structural Division.
Kwak, H.-G., & Filippou, F. C. (1990). Finite element analysis of reinforced concrete structures under monotonic loads: Department of Civil Engineering, University of California Berkeley, CA, USA.
Meier, U. (1992). Carbon fiber-reinforced polymers: modern materials in bridge engineering. Structural Engineering International, 2(1), 7-12.
Meier, U., Deuring, M., Meier, H., & Schwegler, G. (1993). Strengthening of structures with advanced composites. Alternative materials for the reinforcement and prestressing of concrete, 1.
Meier, U., & Kaiser, H. (1991). Strengthening of structures with CFRP laminates. Paper presented at the Advanced composites materials in civil engineering structures.
Meier, U., & Winistorfer, A. (1995). 55 RETROFITTING OF STRUCTURES THROUGH EXTERNAL BONDING OF CFRP SHEETS. Paper presented at the Non-Metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the Second International RILEM Symposium.
Moutoussamy, L., Herve, G., & Barbier, F. (2011). Qualification of* Constrained_Lagrange_In_Solid command for steel/concrete interface modeling. Paper presented at the 8th European LS-DYNA Conference.
Neubauer, U., & Rostásy, F. (2001). Debonding mechanism and model for CFRP plates as external reinforcement for concrete members. Paper presented at the International Conference Composites in Construction CCC 2001.
Osborne, M. (2012). Single-Element Characterization of the LS-DYNA MAT54 Material Model. University of Washington.
Park, R., & Paulay, T. (1975). Reinforced Concrete Structure, John Wiley&Sons. Inc., New York.
Rabbat, B., & Russell, H. (1985). Friction coefficient of steel on concrete or grout. Journal of Structural Engineering, 111(3), 505-515.
Raoof, M., & Hassanen, M. (2000). Peeling failure of reinforced concrete beams with fibre-reinforced plastic or steel plates glued to their soffits. Proceedings of the institution of civil engineers-structures and buildings, 140(3), 291-305.
Saadatmanesh, H., & Ehsani, M. R. (1991). RC beams strengthened with GFRP plates. I: Experimental study. Journal of Structural Engineering, 117(11), 3417-3433.
Schwer, L. (2014). Modeling Rebar: The Forgotten Sister in Reinforced Concrete Modeling. Constitutive Modeling, 13.
Schwer, L. E., & Malvar, L. J. (2005). Simplified concrete modeling with* MAT_CONCRETE_DAMAGE_REL3. JRI LS-Dyna User Week, 49-60.
Shi, Y., Li, Z.-X., & Hao, H. (2009). Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns. Structural Engineering and Mechanics, 32(2), 251-267.
Smith, S. T., & Teng, J. (2002). FRP-strengthened RC beams. I: review of debonding strength models. Engineering Structures, 24(4), 385-395.
101
Song, K., Dávila, C. G., & Rose, C. A. (2008). Guidelines and parameter selection for the simulation of progressive delamination.
Teng, J., & Chen, J. (2007). Debonding failures of RC beams strengthened with externally bonded FRP reinforcement: behaviour and modelling. Paper presented at the Proceedings of the First Asia-Pacific Conference on FRP in Structures (APFIS 2007).
Teng, J. G., Chen, J.-F., Smith, S. T., & Lam, L. (2002a). FRP: strengthened RC structures. Frontiers in Physics, 1.
Teng, J. G., Chen, J.-F., Smith, S. T., & Lam, L. (2002b). FRP: strengthened RC structures (Vol. 1).
Van Mier, J., Shah, S., Arnaud, M., Balayssac, J., Bascoul, A., Choi, S., . . . Gobbi, M. (1997). Strain-softening of concrete in uniaxial compression. Materials and Structures, 30(4), 195-209.
Wade, B., Feraboli, P., & Osborne, M. (2012). Simulating laminated composites using LS-DYNA material model MAT54 part I:[0] and [90] ply single-element investigation. Paper presented at the FAA Joint Advanced Materials and Structures (JAMS) Centre of Excellence, Technical Review Meeting, Maryland.
Wang, C.-Y., & Ling, F.-S. (2000). Retrofitting of Cracked RC Beams By Externally Patched Flexible FRP Tow-Sheets II: Prediction Models of Debonding Failure. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 12(2), 277-289.
Wang, C.-Y., Sun, M.-C., & Ling, F.-S. (2000). Retrofitting of Cracked RC Beams By Externally Patched Flexible FRP Tow-Sheets I: Experimental Study. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 12(1), 113-122.
Wang, C., & Ling, F. (1998). Prediction model for the debonding failure of cracked RC beams with externally bonded FRP sheets. Paper presented at the Second International Conference on Composites in Infrastructure.
Wu, Y., Crawford, J. E., & Magallanes, J. M. (2012). Performance of LS-DYNA concrete constitutive models. Paper presented at the 12th International LS-DYNA Users Conference.
Zhang, S., Raoof, M., & Wood, L. (1995). Prediction of peeling failure of reinforced concrete beams with externally bonded steel plates. Proceedings of the Institution of Civil Engineers. Structures and buildings, 110(3), 257-268.
指導教授 王仲宇(Chung-Yue Wang) 審核日期 2016-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明