博碩士論文 103426005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:54.167.52.238
姓名 陳耕綮(Geng-Chi Chen)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 應用品質機能展開及設計結構矩陣設計建築物能源管理系統
(Applying QFD and DSM for the Design of Building Energy Management Systems)
相關論文
★ 應用MFM 與PPM 監控協同設計之執行流程★ 應用DSM與DRFT於汽車電子之協同開發流程
★ 一協同設計專案團隊組成方法- 以安全監視器產品為例★ 應用認知工程開發全球化光纖通訊系統
★ 羽絨產業策略規劃-應用品質機能展開分析法★ 重電業協同專案管理績效之研究-以變電所統包工程為例
★ 以屬性導向新產品開發之流程塑模與分析– 以醫療器材產業為案例★ 以品質機能展開法應用於主管管理職能之建構
★ 應用參考模型以及流程建模改善供應鏈績效-以投影機產業為例★ 協同產品開發之流程管理 - 以汽車零件為例
★ 配電系統之高壓電纜接頭供應商評選★ 應用品質機能展開於產品開發之流程分析-以刀鋒式伺服器為例
★ 實施精實六標準差改進製程良率-以機頂盒表面黏著技術為例★ 太陽能模組產業之決策營運研究
★ 新產品開發階段導入替代料之流程建模及潛在風險分析★ 應用實驗設計研發PET複合膜及改善厚膜翹曲問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 全球面臨人口膨脹、氣候越趨極端等問題。台灣能源大多仰賴進口,每次能取得的總量有限,也受制於國際情勢波動。建築的節能性因此漸受到重視。本研究以「工業4.0」為研究環境,分析網宇實體系統整合建物能源管理系統(Building energy management systems, BEMS)的優勢,設計能有效配給資源的平台。
藉由數據通訊技術的演進,硬體及網路效能大幅增強,企業在第三次工業革命中,有效地數位化交換巨量資訊。以此為基石,發展出第四次工業革命,又可稱作「工業4.0」。其核心為網宇實體系統(Cyber-Physical System, CPS)。將創新的網路技術套用到各種設備、感測器及電腦,彼此間便能溝通與相互作用,達到虛擬網路與實體的整合。為實物系統添加智慧及能力,元件得以感知、反應,並能透過智慧型的訊息收發功能獲得即時通知。
本研究針對建築物能源管理系統,探討CPS在各類型建築物的能源消耗與控管等面向的發展性。藉由蒐集各種數據,節省建造及維護成本並提昇工作環境品質。透過品質機能展開(Quality Function Deployment,QFD)將顧客需求轉換為組織的工程技術,進而成功的達到滿足顧客需求;接續輔以設計結構矩陣(Design Structure Matrix, DSM),以其易於辨識,易懂之優點,顯示出設計參數彼此之間的關係,建立合適的流程,設計順應新時代工業4.0優勢的建物能源管理系統及智慧建築。
摘要(英) We are facing population explosion and more extreme weather. For most of the energy resource, Taiwan relies on imports. The available total amount is limited, but also subject to fluctuations of the international situation. Energy efficiency of buildings get more attention. Based on "Industry 4.0", this research analyzes the advantages that cyber physical system can be integrated Building energy management systems (BEMS), and design a platform which can ration resources effectively.
With the evolution of communications technology, hardware and network performance, enterprises exchange massive digitized information in the third industrial revolution (Industry 3.0.) successfully. Then, Enterprises start the Industry 4.0. Its core is the cyber physical system (CPS). The innovative network technologies are applied to different devices, sensors, so they can communicate or interact with each other, and achieve the integration of virtual and physical aspect. It provides the physical system intelligence and ability. Thus, components which can perceive and react get instant notifications via smart message functions.
This research focusing on BEMS, discuss CPS’s expansibility of energy consumption and Control in many types of building. By collecting various data, it can save the construction and maintenance costs and improve the quality of the working environment. By Quality Function Deployment (QFD), customers’ demands can be converted to organized engineering technology, and be fulfilled. Then, Design Structure Matrix (DSM), it is easy to identify and understand. DSM method can display the relationship between the parameters, establish appropriate processes and design the BEMS and intelligence building that conform the advantage of edging Industry 4.0 environment.
關鍵字(中) ★ 工業 4.0
★ 網宇實體系統
★ 設計結構矩陣
★ 品質機能展開
★ 建物能源管理系統
★ 智慧建築
關鍵字(英) ★ Industry 4.0
★ cyber physical system
★ design Structure Matrix
★ quality function deployment
★ building energy management systems
★ intelligence building
論文目次 中文摘要 i
Abstract ii
Table of Contents iv
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation & Objectives 2
1.3 Research Overview 3
Chapter 2 Literature Review 5
2.1 Industry 4.0 5
2.1.1 Characteristics of Industry 4.0 5
2.1.2 Design principles of Industry 4.0 7
2.2 Cyber-Physical System 8
2.2.1 Definition of CPS 8
2.2.2 Features of CPS 10
2.3 Energy management 13
Chapter 3 Methodology 15
3.1 Methodology framework 15
3.2 Overview of Methodology 17
3.2.1 Quality Function Deployment 17
3.2.2 Design Structure Matrix 20
Chapter 4 Application 25
4.1 Energy management system of semiconductor industry 25
4.1.1 ISO50001: energy domain 25
4.1.2 Semiconductor industry apply BEMS 27
4.2 Methodology implementation 29
4.2.1 Quality Function Deployment 30
4.2.2 Design Structure Matrix 32
Chapter 5 Conclusion and Future Research 37
5.1 Conclusion 37
5.2 Future Research 38
Reference 39
參考文獻 Akao, Y. (2004). Quality function deployment-Integrating Customer Requirements into Product Design: Productivity Press.

Baheti, R., & Gill, H. (2011). Cyber-physical systems. The impact of control technology, 12, 161-166.

Bauernhansl, T., Ten Hompel, M., & Vogel-Heuser, B. (2014). Industrie 4.0 in Produktion, Automatisierung und Logistik: Anwendung• Technologien• Migration: Springer.

Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How virtualization, decentralization and network building change the manufacturing landscape: An Industry 4.0 Perspective. International Journal of Mechanical, Industrial Science and Engineering, 8(1), 37-44.

Browning, T. R. (2001). Applying the design structure matrix to system decomposition and integration problems: a review and new directions. Engineering Management, IEEE Transactions on, 48(3), 292-306.

Chan, L.-K., & Wu, M.-L. (2002). Quality function deployment: A literature review. European Journal of Operational Research, 143(3), 463-497.

Danilovic, M., & Browning, T. R. (2007). Managing complex product development projects with design structure matrices and domain mapping matrices. International Journal of Project Management, 25(3), 300-314.

Deloitte. (2014). Industry 4.0 Challenges and solutions for the digital transformation and
use of exponential technologies.

Drath, R., & Horch, A. (2014). Industrie 4.0: Hit or hype?[industry forum]. IEEE industrial electronics magazine, 8(2), 56-58.

Fiedler, T., & Mircea, P. (2012). Energy management systems according to the ISO 50001 standard—Challenges and benefits. Paper presented at the Applied and Theoretical Electricity (ICATE), 2012 International Conference on, 1-4.

Figueiredo, J., & Martins, J. (2010). Energy production system management–renewable energy power supply integration with building automation system. Energy Conversion and Management, 51(6), 1120-1126.

Hermann, M., Pentek, T., & Otto, B. (2015). Design principles for Industrie 4.0 scenarios: a literature review. Technische Universität Dortmund, Dortmund.

International organization for standardization. (2011). ISO 50001: Energy management. Genève, Switzerland.

Jazdi, N. (2014). Cyber physical systems in the context of Industry 4.0. Paper presented at the Automation, Quality and Testing, Robotics, 2014 IEEE International Conference on, 1-4.

Kao, H.-A., Jin, W., Siegel, D., & Lee, J. (2015). A Cyber Physical Interface for Automation Systems—Methodology and Examples. Machines, 3(2), 93-106.

Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & Information Systems Engineering, 6(4), 239.

Lee, E. A. (2008). Cyber physical systems: Design challenges. Paper presented at the 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC), 363-369.

Lee, J., Bagheri, B., & Kao, H.-A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18-23.

Lucke, D., Constantinescu, C., & Westkämper, E. (2008). Smart factory-a step towards the next generation of manufacturing Manufacturing systems and technologies for the new frontier (pp. 115-118): Springer.

Motegi, N., Piette, M. A., Kinney, S., & Herter, K. (2003). Web-based energy information systems for energy management and demand response in commercial buildings. Lawrence Berkeley National Laboratory.

Sha, L., Gopalakrishnan, S., Liu, X., & Wang, Q. (2009). Cyber-physical systems: A new frontier Machine Learning in Cyber Trust (pp. 3-13): Springer.

Shi, J., Wan, J., Yan, H., & Suo, H. (2011). A survey of cyber-physical systems. Paper presented at the Wireless Communications and Signal Processing (WCSP), 2011 International Conference on, 1-6.

Swan, M. (2012). Sensor mania! the internet of things, wearable computing, objective metrics, and the quantified self 2.0. Journal of Sensor and Actuator Networks, 1(3), 217-253.

Tan, Y., Goddard, S., & Perez, L. C. (2008). A prototype architecture for cyber-physical systems. ACM Sigbed Review, 5(1), 26.

Wasserman, G. S. (1993). On how to prioritize design requirements during the QFD planning process. IIE transactions, 25(3), 59-65.

Yassine, A. (2004). An introduction to modeling and analyzing complex product development processes using the design structure matrix (DSM) method. Urbana, 51(9), 1-17.

Yu, C., Jing, S., & Li, X. (2012). An Architecture of Cyber Physical System Based on Service. Paper presented at the Computer Science & Service System (CSSS), 2012 International Conference on, 1409-1412.

Zhang, L. (2014). Designing big data driven cyber physical systems based on AADL. Paper presented at the 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 3072-3077.

Zhao, P., Simões, M. G., & Suryanarayanan, S. (2010). A conceptual scheme for cyber-physical systems based energy management in building structures. Paper presented at the Industry Applications (INDUSCON), 2010 9th IEEE/IAS International Conference on, 1-6.
指導教授 高信培(Hsing-Pei Kao) 審核日期 2016-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明