博碩士論文 102322008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.144.42.196
姓名 施閏澶(Jun-Chan Shih)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 高韌性纖維混凝土(ECC)之材料配比及添加物對收縮及力學性質影響
(non)
相關論文
★ 耦合結構牆地震行為與性能化設計法★ 各種載重作用下neo-Hookean材料微孔動態分析
★ 劉氏保群算法於高雷諾數Burgers方程之應用及探討★ 彈性材料圓孔非對稱變形近似解研究
★ HAF描述含圓孔橡膠材料三軸壓縮變形的誤差分析★ 國立中央大學-HAF描述圓形微孔非對稱變形的誤差計算
★ 形狀記憶合金於抗震RC耦合牆系統之初步研究★ 多微孔橡膠材料受拉變形平面應力分析
★ 非線性彈性固體微孔變形特性★ 綠色高韌性纖維混凝土(Green-ECC)本土化發展與自癒合能力之研究
★ 鋼絲網加勁高韌性纖維水泥基複合材料之力學行為研究★ 鋼絲網加勁高韌性纖維混凝土於RC梁構件剪力補強研究
★ 材料組成比例對超高性能纖維混凝土之工作性與力學性質之影響★ 耦合結構牆受近斷層地震作用之行為
★ 高爐石高韌性纖維混凝土(ECC)之開發與自癒合研究★ 搜尋週期為四年時使用SDICAE作強震預測的最佳精度設定
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 高韌性纖維混凝土(Engineered Cementitious Composites,簡稱ECC)是經由微觀力學設計的水泥基工程複合材料,是在基體中添加聚乙烯醇纖維(polyvinyl alcohol,簡稱PVA),在拉力和撓曲作用下呈現高延展性,具有應變硬化和多重開裂的特性。
本研究透過比較飛灰含量、纖維含量、膨脹劑含量來探討ECC材料之收縮性質與力學性質之影響,包括乾燥收縮試驗、自體收縮試驗、圓柱壓力試驗、直接拉力試驗和四點彎矩試驗。結果顯示,飛灰含量越多之ECC材料會使乾縮增加而自收縮漸少。而纖維含量越多之ECC材料會使乾縮和自收縮同時增加。在所有添加膨脹劑之配比中,膨脹劑含量0.5%擁有最低之乾縮與自收縮。
摘要(英) Engineered Cementitious Composites (ECC) is a material using polyvinyl alcohol (PVA) fibers in the matrix. The most important performance characteristic of ECC is that it can exhibit multiple cracks and strain-hardening under tensile and flexural behavior.
In this study, the content of fly ash, PVA fiber and expansive agent are used to investigate ECC’s characteristics. Including drying shrinkage test, autogenous shrinkage test, uniaxial Compressive test, uniaxial tensile test and four points flexural test. The result shows that drying shrinkage increase and autogenous shrinkage decrease while the more content of fly ash in ECC. The more fiber content in ECC cause drying shrinkage and autogenous shrinkage increase. Among all proportions with expansive agent. The specimen adding 0.5% of expansive agent has the lowest drying shrinkage and autogenous shrinkage.
關鍵字(中) ★ 乾縮
★ 自體收縮
關鍵字(英)
論文目次 摘要 i
誌謝 iv
Abstract iii
目錄 iv
圖目錄 ix
表目錄 xi
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法 2
第二章 文獻回顧 3
2.1高韌性纖維混凝土(Engineered Cementitious Composites, ECC) 3
2.2 水泥的收縮變形機制 4
2.2.1塑性收縮(Plastic shrinkage) 5
2.2.2自體收縮(Autogenous shrinkage) 5
2.2.3乾燥收縮(Drying shrinkage) 6
2.3 防範水泥基材料發生裂縫之對策 6
2.3.1使用飛灰當作摻料 7
2.3.2使用纖維當作摻料 11
2.3.3使用膨脹劑當作摻料 14
2.3.4使用爐石粉當作摻料 17
2.3.5其他對收縮性質影響參數 19
第三章 實驗規劃及設置 22
3.1 實驗規劃 22
3.2 實驗材料 22
3.3 試體參數及編號 26
3.4 試體製作與養護流程 30
3.4.1 實驗設計流程 30
3.5 試驗內容與方法 35
3.5.1 乾縮試驗與自體收縮試驗 35
3.5.2 圓柱壓力試驗 36
3.5.3 單軸拉力試驗 37
3.5.4 四點彎矩試驗 38
第四章 試驗結果與討論 40
4.1飛灰對收縮及力學性質影響 40
4.1.1乾燥收縮試驗 40
4.1.2 自體收縮試驗 41
4.1.3 圓柱壓力試驗 43
4.1.4 直接拉力試驗 46
4.1.5 四點彎矩試驗 50
4.2 纖維對收縮及力學性質影響 52
4.2.1 乾燥收縮試驗 52
4.2.2 自體收縮試驗 54
4.2.3 圓柱壓力試驗 55
4.2.4 直接拉力試驗 58
4.2.5 四點彎矩試驗 62
4.3 膨脹劑對收縮及力學性質影響 64
4.3.1 乾燥收縮試驗 64
4.3.2 自體收縮試驗 66
4.3.3 圓柱壓力試驗 67
4.3.4 直接拉力試驗 70
4.3.5 四點彎矩試驗 74
4.4 不同混凝土對收縮影響 76
4.4.1 不同配比差異之乾縮 76
4.4.2 試體大小差異之乾縮 78
第五章 結論與建議 81
參考文獻 85
參考文獻 [1] Sahmaran, M., Lachemi, M., Hossain, K.M.A. and Li, V.C., Internal curing of engineered cementitious composites for prevention of early age autogenous shrinkage cracking. Cement and Concrete Research, 2009. 39(10): p. 893-901.
[2] Rokugo, K., Kanda, T. and Yokota, H., Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks(HPFRCC). Materiasl and Structures, 2008. 82(9): p. 1197-1208.
[3] Mindess, S. and Young, J.F., Concrete. Prentics-Hall, Inc., Englewood Cliffs, New Jersey, 2002.
[4] Bentz DP, Jensen OM. Mitigation strategies for autogenous shrinkage cracking. Cement Concrete Composite 2004. 26(6): p.667-685.
[5] Jensen OM, Hansen PF. Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste. Cement Concrete Research 1999. 29(4): p.567-575.
[6] Jensen OM, Hansen PF. Autogenous deformation and RH-change inperspective. Cement Concrete Research 2001. 31(12): p1859-1865.
[7] Jiang Z, Sun Z, Wang P. Autogenous relative humidity change and autogenous shrinkage of high-performance cement pastes. Cement Concrete Research 2005. 35(8): p.1539-1545.
[8] Neville, A.M., Properties of Concrete. 3rd Edition,Pitman Publishing Limited,1981 .
[9] Li, M., and Li, V.C., Behavior of ECC/Concrete layer repair system under drying shrinkage conditions. Proceedings of ConMat 5, 2006. : p.22-24.
[10] 石正義、林文祺,建築物龜裂防範與對策. 詹氏書局,台北,1993。
[11] 廖肇昌、黃兆龍,混凝土問題原因及診治. 民全書局有限公司,台北,1987。
[12] Özbay, E., Karahan, O., Lachemi, M., Hossain, K. M. A., and Atis, C. Duran, Investigation of Properties of Engineered Cementitious Composites Incorporating High Volumes of Fly Ash and Metakaolin. ACI Materials Journal, 2012. 109(5).
[13] Nath, P. and Sarker, P.K., Effect of mixture proportions on the drying shrinkage and permeation properties of high strength concrete containing class F fly ash. KSCE Journal of Civil Engineering, 2013. 17(6): p. 1437-1445.
[14] Jiang, L.H. and Malhotra, V.M., Reduction of water demand of non-air-entrained concrete incorporating large volumes of fly ash. Cement and Concrete Research, 2000. 30(11): p. 1785-1789.
[15] Naaman, A.E. and Reinhardt, H.W., Characterization of high performance fiber reinforced cement composites-HPFRCC, high performance fiber reinforced cement composites 2. In Proceedings of the 2nd International Workshop. Ann Arbor, Mich, USA. 1995.
[16] Fischer, G and Li, V. C. Effect of matrix ductility on deformation behavior of steel reinforced ECC flexural members under reversed cyclic loading conditions. ACI Structural Journal, 2002. 99(6): p. 781-790.
[17] Canbolat, B.A., Parra-Montesinos, G.J. and Wight, J.K. Experimental study on seismic behavior of high-performance fiber-reinforced cement composite coupling beams. ACI Structural Journal, 2005. 102(1): p. 159-166.
[18] Kobayashi, K and Rokugo, K. Mechanical performance of corroded RC member repaired by HPFRCC patching. Constructionand Building Materials, 2013. 39: p. 139-147.
[19] Zhang, Y.X., Ueda,N., Umeda, Y., Nakamura, H. and Kunieda, M. Evaluation of shear failure of strain hardening cementitious composite beams. The Proceedings of the 12th East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-12’11), 2011. 14: p. 2048-2057.
[20] Hung, C.C., Tseng, B.T., You, W.G., and Huang, J.L. Effectiveness of using high performance fiber reinforced concrete in coupled structural walls for improving seismic performance. Structural Engineering, Chinese Society of Structural Engineering, 2011. 26(4): p. 3-16.
[21] Kim, S.W. and Yun, H.D. Crack-damage mitigation and flexural behavior of flexure-dominant reinforced concrete beams repaired with strain-hardening cement-based composite. Composites Part B, 2011. 42(4): p. 645-656.
[22] Hung, C.C. and Chueh, C.Y. Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar. Engineering Structures, 2016. 122: p. 108-120.
[23] Zhang, J., Gong, C., Guo, Z. and Zhang, M. Engineered cementitious composite with characteristic of low drying shrinkage. Cement and Concrete Research, 2009. 39(4): p. 303-312.
[24] Wang, J.Y., Banthia, N. and Zhang, M.H. Effect of shrinkage reducing admixture on flexural behaviors of fiber reinforced cementitious composites. Cement and Concrete Composites, 2012. 34(4): p. 443-450.
[25] Cheung, A.K.F. and Leung, C.K.Y. Shrinkage reduction of high strength fiber reinforced cementitious composites (HSFRCC) with various water-to-binder ratios. Cement and Concrete Composites, 2011. 33(6): p. 661-667.
[26] Lepech, M. and Li, V. C. Durability and long term performance of engineered cementitious composites. In Proceedings of the International Workshop on HPFRCC in Structural Applications, 2006. p. 23-26.
[27] Lee, Y.H. and Yun, H.D. Effects of expansive admixture on the mechanical properties of strain-hardening cement composite (SHCC). Journal of the Korea Concrete Institute, 2010. 22(5): p. 617-624.
[28] Mao, X., Zhao, T.J. and Zhang P., Optimization of shrinkage and crack resistance performance of Engineered Cementitious Composites (ECC). Electric Technology and Civil Engineering (ICETCE), 2011 International Conference on. p. 534-538.
[29] 陳建奎,混凝土外加劑的原理與應用. 中國計劃出版社,北京,1997。
[30] Nagataki, S. and Gomi, H., Expansive admixtures (mainly ettringite). Cement and Concrete Composites, 1998. 20(3): p.163-170.
[31] 馮浩、朱清江,混凝土外加劑工程應用手冊. 中國建築工藝出版社,北京,1999。
[32] Choi, W.C. and Yun, H.D., Effect of Expansive Admixtures on the Shrinkage and Mechanical Properties of High-Performance Fiber-Reinforced Cement Composites. The Scientific World Journal, 2013. Article ID 418734.
[33] Zhu, Y., Yang, Y., and Yao, Y., Use of slag to improve mechanical properties of engineered cementitious composites (ECCs) with high volumes of fly ash. Construction and building materials, 2012. 36: p.1076-1081.
[34] Jiang, L. H. and Malhotra, V. M., Reduction of water demand of non-air-entrained concrete incorporating large volumes of fly ash. Cement and Concrete Research, 2000. 30(11):p. 1785-1789.
[35] 黄士元,近代混凝土技術.,陝西學技術出版社,1998。
指導教授 洪崇展、李顯智 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明