博碩士論文 104322048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.144.253.160
姓名 徐煜淳(Yu-Chun Hsu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 橋梁淺基礎三維側推數值分析
(Three dimensional push over analysis for foundation of bridge)
相關論文
★ 土壤液化評估模式之不確定性★ 廣域山崩之統計與最佳化分析-以莫拉克風災小林村鄰近地區為例
★ 砂土中模型基樁之單向反覆軸向載重試驗★ 邊坡穩定分析方法之不確定性
★ 不同試驗方法對黏土壓縮與壓密性質之影響★ 台北盆地黏性土壤不排水剪力強度之研究
★ 土壤液化引致地盤永久位移之研究★ 台北盆地地盤放大特性之研究
★ 水力回填煤灰之動態特性★ 全機率土壤液化分析法
★ 黏土壓縮與壓密行為之研究★ 集集地震液化土之穩態強度
★ 現地土壤之液化強度與震陷特性★ 地震規模修正因子之探討
★ 鯉魚潭水庫大壩受震反應分析★ 全機率土壤液化評估法之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣位於板塊交界處,地震頻繁,並造就許多崎嶇地形,使得橋梁結構廣泛運用。一般橋梁淺基礎主要承受垂直向之載重。然而,當上部結構受地震力或風力等側向力作用時,淺基礎將承受水平力、垂直力和彎矩聯合作用。在此載重組合作用下,產生相當複雜之土壤結構互制行為,為防範淺基礎結構發生破壞或產生過大之變形,值得針對此課題,進行深入之研究。
近年來耐震設計領域廣泛推動性能設計法(Performance Based Design)。即針對不同等級地震作用下,要求結構物須滿足規定之性能。要具體落實,需計算結構物承受地震力時,由小變形到大變形之完整受力行為,此計算過程稱為側推分析(Pushover Analysis)。目前橋梁淺基礎耐震分析較少談及側推曲線,相關數值分析均著重於翻轉(rocking)部分之行為,且多採用土壤非線性彈簧即溫克勒模型(Winkler modeling)進行分析,此模型無法模擬基礎側滑與翻轉耦合之行為。此外,還涉及基礎尺寸效應、彈簧參數和土壤承載力計算等影響因子,因此採用三維土壤與結構元素模擬,可更符合現地狀況。
本文採用FLAC3D有限差分程式建置三維橋梁淺基礎模型進行側推分析,並與SAP2000分析結果進行比較,結果顯示FLAC3D模型之側推剛度較小,於相同地震力下將產生較大之水平位移,但橋墩基礎於極限狀態所能承受之最大地震力相近。藉由參數影響分析迴歸出不同基礎尺寸與地盤N值所對應之垂直地盤反力係數,以供日後工程設計參數之參考。
摘要(英) Recently, Performance Based Design has been promoted in the field of seismic design. It is required that the structures should meet their given properties under different intensities of earthquakes. In Performance Based Design, calculating the structure’s deformation is needed while it is subjected to seismic force, and this process is called Pushover Analysis. Nowadays, pushover curve in the seismic analysis of shallow foundations is rarely mentioned, and the relative numerical analysis focuses on the rocking performance by non-linear elastic soil model. However, the model fails to simulate the coupling of horizontal sliding and rocking behavior in soil and should consider the dimensional effect, spring parameters and bearing capacity of soil. As a result, applying three-dimensional soil elements to simulate would be more suitable for situ condition.
In this article, the model of a three-dimensional shallow foundation for bridge was set up by FLAC3D for pushover analysis. After comparing with the analysis results of SAP2000, the stiffness of the model produced by FLAC3D is smaller, which means the lateral displacement is more obvious. Nevertheless, in the ultimate limit state, the maximum seismic force that the bridge foundation can bear from these two analysis are almost the same.
關鍵字(中) ★ 淺基礎
★ 性能設計法
★ 側推分析
★ FLAC3D
關鍵字(英) ★ shallow foundation
★ performance based design
★ pushover analysis
★ FLAC3D
論文目次 第一章 緒論 1
1.1 研究動機 1
1.2 研究方法與目的 3
1.3 研究內容 4
第二章 文獻回顧 5
2.1 性能設計 5
2.2 淺基礎反應行為 6
2.3 溫克勒基礎模型 8
2.4 地盤反力係數 10
2.5 側推分析 13
2.6 淺基礎承載力 18
2.7 淺基礎沉陷量 20
2.8 翻轉反應 22
第三章 研究方法 26
3.1 有限差分概要 26
3.2 FLAC 3D程式介紹 27
3.3 數值分析步驟 30
3.4 模型幾何與材料參數 33
3.5 幾何建模 35
3.6 材料組成律與破壞準則 37
3.7 介面元素 39
3.8 邊界條件 44
3.9 邊界尺寸 45
3.10 數值試驗流程 46
第四章 數值分析結果與討論 48
4.1 無埋置基礎版模型 48
4.1.1 極限承載力試驗 48
4.1.2 彎矩-旋轉角翻轉性能曲線 54
4.2 埋置基礎版模型 58
4.2.1 極限承載力試驗 58
4.2.2 彎矩-旋轉角性能曲線 64
4.3 側推分析模型 67
4.3.1 自重平衡分析 67
4.3.2 靜力側推分析 70
4.4 地盤反力係數探討 78
4.4.1 彈性地盤 78
4.4.2 彈塑性地盤 80
4.5 SAP2000側推分析 83
4.5.1 分布彈簧數量影響分析 83
4.5.2 集中與分布彈簧模型分析比較 86
4.5.3 FLAC3D模擬結果回饋分析 88
4.6 設計參數影響分析 92
4.6.1 全模型、二分之一模型與四分之一模型比較 92
4.6.2 基礎尺寸對垂直地盤反力係數之影響 96
4.6.3 地盤N值對垂直地盤反力係數之影響。 100
4.6.4 「基礎尺寸」與「地盤N值」對垂直地盤反力係數之影響。 103
4.6.5 埋置深度對彎矩-旋轉角性能之影響 109
4.6.6 理論臨界旋轉角與模擬結果比較 114
第五章 結論 119
第六章 建議與未來展望 121
參考文獻 122
參考文獻 1.Antonellis, G. and Panagiotou, M., “Seismic design and performance of bridges with columns on rocking foundations,” PEER Report, Department of Civil and Environmental Engineering, University of California, Berkeley (2013).
2.Anastasopoulos, I., Kourkoulis, R, Gelagoti, F., and Papadopoulos, E., “Rocking response of SDOF systems on shallow improved sand: An experimental study,” Soil Dynamics and Earthquake Engineering, Volume 40(1), pp.15–33 (2012).
3.Allotey, N. and El Naggar, M. H., “An investigation into the winkler modeling of the cyclic response of rigid footings.” Soil Dynamics and Earthquake Engineering, Volume 28(1), pp.44-57 (2008).
4.Baffo, D., “Seismic rocking isolation effect on superficial foundation of bridges,”Master’s Thesis, Department of Earthquake Engineering, University of Pavia, Italy(2007).
5.Bowles, J.E., “Elastic foundation settlement on sand deposit.” Journal of Geotechnical Engineering, ASCE, Vol. 113, No. 8, pp. 846-860 (1987).
6.Das, B. M. and Sobhan, K., “Principles of geotechnical engineering.” eighth edition, pp.353-364 (2013)
7.Gazetas, G., Panagiotidou, A. I., and Gerolymos, N.,“Pushover and inelastic-seismic response of shallow foundations supporting a slender structure,”Fifth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics (2010).
8.Hutchinson, T. C., “Numerical tools for modeling rocking foundations,”Caltrans-PEER Seismic Research Seminar, Sacramento, U.S.A. (2009).
9.Housner, G., “ The Behavior of Inverted Pendulum Structures during Earthquakes”, Bulletin of the Seismological Society of America, Volume 53,No.2, p403-417 (1963).
10.Japan Road Association. Specification for Highway and Bridges, Part IV, JRA, Tokyo Japan (2002).
11.Kutter, B. L., Deng, L., and Kunnath, S. M., “Testing and design of bridge deck- column-rocking foundation systems.” Caltrans-PEER Seismic Research Seminar, Sacramento, U.S.A. (2009).
12.Kawashima, K., “Rocking seismic isolation of bridges supported by direct foundations,” Caltrans-PEER Seismic Research Seminar, Sacramento, U.S.A. (2009).
13.Kitazawa, G., Kitayama, K., Suzuki K., Ohkawa, H., and Ohsaki, Y., Tokyo ground map. Gihodo, Tokyo, pp.23 (1959).
14.Lu, Y., Marshall, A. M., and Hajirasouliha, I., “A simplified nonlinear sway-rocking model for evaluation of seismic response of structures on shallow foundation.” Soil dynamics and earthquake engineering, Volume 81, pp. 14-26 (2016).
15.Lam, P., “Foundation rocking practical experience,” Caltrans-PEER Seismic Research Seminar, Sacramento, U.S.A. (2009).
16.Marto, A., Latifi, N., Janbaz, M., Kholghifard, M., Khari, M., Alimohammadi, P., and Banadaki A. D., “Foundation size effect on modulus of subgrade reaction on sandy soils.” Electronic journal of geotechnical engineering, Volume 17, pp. 2524-2530 (2012).
17.Mahin, S., Espinoza, A., “Experiments and design recommendations for single column rocking bridge piers,” Caltrans-PEER Seismic Research Seminar, Sacramento, U.S.A. (2009).
18.Paolucci1, R., Shirato, M., and Yilmaz, M. T., “Seismic behaviour of shallow foundations: Shaking table experiments vs numerical modeling,”Earthquake Engng Struct. Dyn, Volume 37(4), pp.577–595 (2008).
19.日本鐵道綜合技術研究所,鐵道構造物等設計標準‧同解說-基礎構造物,日本 (2012)。
20.日本道路協會,道路橋示方書.同解說「第九章 基礎安定相關基本事項」,第254-257頁,日本 (2002)。
21.日本土木學會,國鐵建造物設計標準解說-基礎構造物,日本 (1986)。
22.洪曉慧、葛伊仁、劉光晏、張國鎮,「考慮直接基礎翻轉機制之橋梁耐震性能研究Ⅲ」,國家地震研究中心報告,台北(2010)。
23.陳正興、黃俊鴻、邱俊翔、柯永彥、徐明志、許雅涵、林毓瑛,「大地工程性能設計之研發及導入」,台灣世曦工程顧問102年度研發計畫成果摘要報告,第27-57頁,台北 (2013)。
指導教授 黃俊鴻(Jin-Hung Hwang) 審核日期 2016-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明