博碩士論文 103324038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:3.147.59.219
姓名 王牧崗(Mu-Gang Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 二階段法製備均一粒徑之次微米球
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 利用次微米球建構具機械性質之光子晶體薄膜
★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體
★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究★ 含水溶性藥物之乙基纖維素微膠囊的製備
★ 銅箔基板環氧樹脂含浸液之研究★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備
★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子
★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體★ 溶膠-凝膠法製備相轉移材料微膠囊
★ 親疏水性光阻製備★ 奈米多孔性材料之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以二階段法合成均一粒徑之次微米球,來改善傳統溶脹法於溶脹程序添加助溶脹劑、共溶劑及手續繁雜使其反應時間較長的問題。首先以低分子量PSt 為種子,探討縮短傳統溶脹程序之可行性。之後以高分子量之PSt 或PMMA為種子,探討製備出較大粒徑之均一粒徑次微米球的可行性。最後,於PSt 或 PMMA 核心反應轉化率80%~90%時添加第二階段單體的方式,探討製備出較大粒徑之均一粒徑次微米球的可行性。
結果顯示,當鏈轉移劑添加於核心轉化率55%及95%添加時,可成功製備
出粒徑為469nm 及473nm 低分子量之均一粒徑粒子。而在溶脹程序時,當添加 SDS 作為穩定劑時,由於短分子鏈段的關係造成許多小粒子,而改以PVA 為穩定劑則可以改善其狀況,並於添加量為0.7%~2%時,得到粒徑大約為825nm 之均一粒徑次微米球。
另一部分,以高分子量之PSt 或PMMA 為種子,並將溶脹溫度上升接近核
心之Tg,藉此在不需鏈轉移劑及穩定劑的情況下,成功製備出PSt 粒徑範圍為 240nm~375nm 及PMMA 粒徑範圍為316nm~462nm 之均一粒徑次微米球。
為了更進一步縮短反應時間,於PSt 或PMMA 轉化率為80%~90%時,添加
二階段單體,探討核心克數及殼層單體添加量對粒子之影響,結果隨著核心(10g~25g)及殼層單體添加量(1 倍~9 倍)上升,粒徑有明顯上升的趨勢,成功製備出PSt 粒徑範圍為208nm~420nm、PMMA 粒徑範圍為275nm~560nm 及 PMMA/PSt 粒徑範圍為402nm~582nm 之均一粒徑次微米球。改變殼層結構方面,在殼層添加20% EGDMA 交聯劑的情況下,當殼層添加倍率為6 倍以上時,即具有耐溶劑之性質。而隨著二階段單體親水性越強,則因二次成核的關係,粒子均一度越差,然而可以三階段添加親水性單體的方式,成功製備出具不同表面官能基之均一粒徑次微米球。
摘要(英) The size of monodisperse submicrospheres has been increased by using two-step method. Low or regular molecular weight of monodisperse seeds were prepared at the first step. Monomers were added in the seed latex and polymerized at the second step. On the other hands, in order to further shorten the reaction time, monomers were added when the seed conversion was 80% to 90%. The effect of monomer content and monomer species at two steps were also discussed.

The results indicated that low molecular weight and monodisperse PSt seed with diameter 469nm and 473nm were prepared by adding chain transfer agent at seed conversion 55% and 95%, respectively. The monodisperse PSt submicrospheres with 825 nm diameter were obtained when 0.7% to 2% of PVA were added at the second step.

The size of regular molecular weight of PSt and PMMA monodisperse seeds were 240nm and 316 nm, respectively. Using above seeds and monomers at the second step, the size of PSt and PMMA monodisperse submicrospheres became
375nm and 462nm, respectively. In addition, the reaction temperature was closed to Tg of seeds and chain transfer agent and stabilizer were not added.

To further reduce the total reaction time, monomers were added when the conversion of PSt or PMMA seed was 80% to 90%. The particle diameters of monodisperse submicrospheres were increased with increasing monomer amount at the first step (10g~25g) and with increasing monomers added at the second step (1~9) times, based on the first step monomer). The sizes of PSt, PMMA, and PMMA/PSt monodisperse submicrospheres were 420 nm, 560 nm and 582 nm, respectively. And the sizes of above seeds were 208 nm, 275 nm, and 402 nm respectively. In addition,
the monodisperse PSt submicrosphere with solvent resistant was obtained when more than 6 times of monomers and 20 wt.% of crosslinkers, EGDMA, were added at the second step. The PSt monodisperse submicrospheres with different hydrophilic functional group were also obtained by adding hydrophilic monomer at the third step.
關鍵字(中) ★ 均一粒徑次微米球
★ 無乳化劑乳化聚合
★ 二階段法
關鍵字(英) ★ Monodisperse submicrosphere
★ Soap-free emulsion polymerization
★ Two-step method
論文目次 目錄
中文摘要 ........................................... I
英文摘要 ........................................... III
目錄 ............................................... IV
圖目錄 ............................................. VI
表目錄 ............................................. IX
第一章 緒論 ......................................... 1
1-1 均一粒徑高分子球之簡介與文獻回顧 .................................................... 1
1-2 研究動機與目的 .................................................... 4
第二章 實驗 .................................................... 5
2-1 實驗藥品 .................................................... 5
2-2 實驗儀器 .................................................... 9
2-3 實驗方法 .................................................... 10
2-3-1 低分子量PSt 核心之製備 .................................................... 10
2-3-2 低分子量聚苯乙烯溶脹程序之製備.................................................. 12
2-3-3 高分子核心之製備 .................................................... 14
2-3-4 二階段法製備均一粒徑次微米球................................................... 16
2-3-5 二階段法快速製備均一粒徑次微米球 .................................................... 18
2-4 儀器分析 .................................................... 20
2-4-1 掃描式電子顯微鏡(SEM)測試條件 .................................................... 20
2-4-2 動態粒徑分析儀(DLS)測試條件 .................................................... 20
第三章 結果與討論 .................................................... 21
3-1 低分子量聚苯乙烯製備次微米球之探討 .................................................... 22
3-1-1 低分子量核心之製備 .................................................... 22
3-1-2 以十二烷基硫酸鈉為穩定劑之探討.................................................. 23
3-1-3 以聚乙烯醇為穩定劑之探討 .................................................... 24
3-1-4 核心純化對粒子均一性之探討.................................................. 24
3-2 二階段法製備均一粒徑次微米球 .................................................... 38
3-2-1 以聚苯乙烯為核心之製備 .................................................... 38
3-2-2 以聚甲基丙烯酸甲酯為核心之製備.................................................. 39
3-3 以聚苯乙烯為核心快速製備均一粒徑次微米球 .................................................... 46
3-3-1 核心單體添加量之探討 .................................................... 46
3-3-2 殼層為聚苯乙烯次微米球之製備................................................... 46
3-3-3 殼層為交聯型聚苯乙烯次微米球之製備 .................................................... 48
3-3-4 具不同表面官能基次微米球之製備................................................... 49
3-4 以聚甲基丙烯酸甲酯為核心快速製備均一粒徑次微米球 .... 73
3-4-1 核心單體添加量之探討 ..................................................... 73
3-4-2 殼層為聚甲基丙烯酸甲酯次微米球之製備 ..................................................... 73
3-4-3 殼層為聚苯乙烯次微米球之製備................................................... 74
第四章 結論 ..................................................... 84
參考文獻 ..................................................... 86
參考文獻 參考文獻
[1] H. Minami, Z. Wang, T. Yamashita, M. Okubo. "Thermodynamic analysis of the
morphology of monomer-adsorbed, cross-linked polymer particles prepared by the
dynamic swelling method and seeded polymerization." Colloid and Polymer Science
281.2003.(3): 246-252.
[2] A. Mansour, R. Ahmed, A. Bassyouni, G. Nasr. "Optical spectroscopic studies of
perylene dye doped in copolymer of ST/MMA as solar collector." International
Journal of Polymeric Materials 56.2007.(6): 651-662.
[3] T. Ellingsen, O. Aune, J. Ugelstad, S. Hagen. "Monosized stationary phases for
chromatography." Journal of Chromatography A 535.1990. 147-161.
[4] S. Camli, S. Senel, A. Tuncel. "Cibacron blue F3G-A-attached uniform and
macroporous poly (styrene-co-divinylbenzene) particles for specific albumin
adsorption." Journal of Biomaterials Science, Polymer Edition 10.1999.(8): 875-889.
[5] D. Horak, M. Karpíšek, J. Turkova, M. Beneš. "Hydrazide‐Functionalized Poly (2‐
hydroxyethyl methacrylate) Microspheres for Immobilization of Horseradish
Peroxidase." Biotechnology progress 15.1999.(2): 208-215.
[6] E. Unsal, S. Camli, S. Senel, A. Tuncel. "Chromatographic performance of
monodisperse–macroporous particles produced by “modified seeded polymerization.”
I: Effect of monomer/seed latex ratio." Journal of applied polymer science
92.2004.(1): 607-618.
[7] F. Gritti, I. Leonardis, J. Abia, G. Guiochon. "Physical properties and structure of
fine core–shell particles used as packing materials for chromatography: relationships
between particle characteristics and column performance." Journal of
Chromatography A 1217.2010.(24): 3819-3843.
[8] M.-J. Yim, K.-W. Paik, Design and understanding of anisotropic conductive films
(ACFs) for LCD packaging, Polymeric Electronics Packaging, 1997. Proceedings.,
The First IEEE International Symposium on, IEEE, 1997, pp. 233-242.
[9] Y.-S. Eom, J.-W. Baek, J.-T. Moon, J.-D. Nam, J.-M. Kim. "Characterization of
polymer matrix and low melting point solder for anisotropic conductive film."
Microelectronic Engineering 85.2008.(2): 327-331.
[10] B. Platzer, R.-D. Klodt, B. Hamann, K.-D. Henkel. "The influence of local flow
conditions on the particle size distribution in an agitated vessel in the case of
suspension polymerisation of styrene." Chemical Engineering and Processing:
Process Intensification 44.2005.(11): 1228-1236.
[11] H. Jung, K. Song, K. Lee, B.H. Lee, S. Choe. "Reaction and stabilizing
mechanism of the cross-type macromonomers in the dispersion polymerization of
87
styrene." Journal of colloid and interface science 308.2007.(1): 130-141.
[12] J.-W. Kim, K.-D. Suh. "Monodisperse micron-sized polystyrene particles by
seeded polymerization: effect of seed crosslinking on monomer swelling and particle
morphology." Polymer 41.2000.(16): 6181-6188.
[13] K. Zhang, W. Wu, H. Meng, K. Guo, J.-F. Chen. "Pickering emulsion
polymerization: preparation of polystyrene/nano-SiO 2 composite microspheres with
core-shell structure." Powder Technology 190.2009.(3): 393-400.
[14] T. Yamamoto, Y. Kanda, K. Higashitani. "Molecular-scale observation of
formation of nuclei in soap-free polymerization of styrene." Langmuir 20.2004.(11):
4400-4405.
[15] T. Yamamoto, M. Nakayama, Y. Kanda, K. Higashitani. "Growth mechanism of
soap-free polymerization of styrene investigated by AFM." Journal of colloid and
interface science 297.2006.(1): 112-121.
[16] A. Rogozea, F. Savonea, A. Caragheorgheopol, I.-C. Bujanca, M. Dimonie.
"SOAP FREE EMULSION POLYMERIZATION. A SPIN PROBE STUDY OF THE
COLLOID SYSTEM IN THE EARLY STAGES OF REACTION." REVUE
ROUMAINE DE CHIMIE 56.2011.(4): 351-+.
[17] T. Matsumoto, A. Ochi. "Polymerization of styrene in aqueous solution."
Kobunshi Kagaku 22.1965.(244): 481-487.
[18] Y. Yamada, T. Sakamoto, S. Gu, M. Konno. "Soap-free synthesis for producing
highly monodisperse, micrometer-sized polystyrene particles up to 6 μm." Journal of
colloid and interface science 281.2005.(1): 249-252.
[19] D. Nagao, T. Sakamoto, H. Konno, S. Gu, M. Konno. "Preparation of
micrometer-sized polymer particles with control of initiator dissociation during
soap-free emulsion polymerization." Langmuir 22.2006.(26): 10958-10962.
[20] Z.-Z. Gu, H. Chen, S. Zhang, L. Sun, Z. Xie, Y. Ge. "Rapid synthesis of
monodisperse polymer spheres for self-assembled photonic crystals." Colloids and
Surfaces A: Physicochemical and Engineering Aspects 302.2007.(1): 312-319.
[21] X. Du, J. He. "Facile size‐controllable syntheses of highly monodisperse
polystyrene nano‐and microspheres by polyvinylpyrrolidone‐mediated emulsifier‐free
emulsion polymerization." Journal of applied polymer science 108.2008.(3):
1755-1760.
[22] S.T. Camli, F. Buyukserin, M.S. Yavuz, G.G. Budak. "Fine-tuning of functional
poly (methylmethacrylate) nanoparticle size at the sub-100nm scale using
surfactant-free emulsion polymerization." Colloids and Surfaces A: Physicochemical
and Engineering Aspects 366.2010.(1): 141-146.
[23] E. Rusen, A. Mocanu, B. Marculescu, R. Somoghi, L. Butac, F. Miculescu, C.
Cotrut, I. Antoniac, C. Cincu. "Obtaining complex structures starting from
88
monodisperse poly (styrene-co-2-hydroxyethylmethacrylate) spheres." Colloids and
Surfaces A: Physicochemical and Engineering Aspects 375.2011.(1): 35-41.
[24] A.M. Telford, B.T. Pham, C. Neto, B.S. Hawkett. "Micron‐sized polystyrene
particles by surfactant‐free emulsion polymerization in air: Synthesis and
mechanism." Journal of Polymer Science Part A: Polymer Chemistry 51.2013.(19):
3997-4002.
[25] K. Shibuya, D. Nagao, H. Ishii, M. Konno. "Advanced soap-free emulsion
polymerization for highly pure, micron-sized, monodisperse polymer particles."
Polymer 55.2014.(2): 535-539.
[26] Q. Zhang, Y. Han, W. Wang, T. Song, J. Chang. "A theoretical and experimental
investigation of the size distribution of polystyrene microspheres by seeded
polymerization." Journal of colloid and interface science 342.2010.(1): 62-67.
[27] M. Okubo, T. Nakagawa. "Preparation of micron-size monodisperse polymer
particles having highly crosslinked structures and vinyl groups by seeded
polymerization of divinylbenzene using the dynamic swelling method." Colloid and
Polymer Science 270.1992.(9): 853-858.
[28] Q. Zhang, Y. Han, W.-C. Wang, L. Zhang, J. Chang. "Preparation of fluorescent
polystyrene microspheres by gradual solvent evaporation method." European Polymer
Journal 45.2009.(2): 550-556.
[29] J.W. Kim, K.D. Suh. "Monodisperse, full‐IPN Structured Polymer Particles in
Micron‐Sized Range by Seeded Polymerization." Macromolecular Chemistry and
Physics 202.2001.(5): 621-627.
[30] W. Yang, W. Ming, J. Hu, X. Lu, S. Fu. "Morphological investigations of
crosslinked polystyrene microspheres by seeded polymerization." Colloid and
Polymer Science 276.1998.(8): 655-661.
[31] D. Kim, K. Lee, S. Choe. "Effect of crosslinking agents on the morphology of
polymer particles produced by one-step seeded polymerization." Macromolecular
Research 17.2009.(4): 250-258.
[32] E. Partouche, D. Waysbort, S. Margel. "Surface modification of crosslinked poly
(styrene-divinyl benzene) micrometer-sized particles of narrow size distribution by
ozonolysis." Journal of colloid and interface science 294.2006.(1): 69-78.
[33] J.-S. Song, M.A. Winnik. "Cross-linked, monodisperse, micron-sized polystyrene
particles by two-stage dispersion polymerization." Macromolecules 38.2005.(20):
8300-8307.
[34] 歐進祿,「均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微
米級之緻密或交聯結構粒子」,國立中央大學化學工程與材料工程學系博士論文
(2001)
指導教授 陳暉(Hui Chen) 審核日期 2016-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明