博碩士論文 103324019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:146 、訪客IP:18.223.171.12
姓名 簡銘彥(Ming-Yen Chien)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 銀對二氧化鈦溶膠之光催化活性及抗菌性影響
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 二氧化鈦是一種能將有害物質分解為二氧化碳和水的光觸媒之一,在本研究中以溶凝膠法製備二氧化鈦凝膠,本研究中以四氯化鈦做為前驅物,過氧化氫做為塑解劑,在95 °C度高溫下將氫氧化鈦水溶液轉換成二氧化鈦凝膠。本研究之目的最主要在於將二氧化鈦改質,以提高二氧化鈦之穩定性以及加強二氧化鈦在可見光範圍之光催化效率。加入銀可以使二氧化鈦溶膠有更好的抗菌能力,並且有效地降低顆粒凝聚現象、達到更好的穩定度。
本研究透過XRD和HRTEM的晶格距離可得到樣品所對應二氧化鈦的銳鈦礦相。DLS和HRTEM的結果呈現改值後的二氧化鈦的粒徑較未改質前小,此外也可由ζ電位(Zeta potential)的大小確認維生素C有增強二氧化鈦溶膠的穩定度。
本研究使用亞甲基藍染料為維生素C-二氧化鈦溶膠的光降解活性做測試
,經由UV-Vis分析可得到:在紫外光或可見光的照射下,二氧化鈦和銀的比例為2 wt. %時的光催化效果是最好的。
摘要(英) Titanium dioxide, also called titania, is a kind of photocatalyst that can degrade harmful materials into H2O and CO2. In this study, TiO2 sol was prepared by sol-gel method using TiCl4 as precursor and H2O2 as peptizing agent in order to induce the formation of TiO2 nanoparticles that converted from Ti(OH)4 under 95°C. The purpose of this study was to apply sol-gel method to prepare silver-modified TiO2 for enhancement of sol stability, TiO2 particle size distribution, and improvement of photocatalytic activity under UV light and visible light irradiation. The presence of silver can lead to high antibacterial capability. The photocatalysts were characterized by XRD, DLS, SEM, TEM, HRTEM, FTIR, and UV-Vis spectroscopy. We could confirm that our titanium sols are anatase by XRD and HRTEM. And by DLS and HRTEM, we could figure out that the diameters of modified TiO2 are smaller than those of pure TiO2. The Zeta potential of the modified TiO2 is higher than that of pure ones. As a result, the addition of silver could improve the photocatalytic activity and prevented the particles from agglomeration; besides, the sols remained stable and did not precipitates after storage for over a year. It was observed that the optimum Ag to TiO2 ratio was 1 wt%, and the sample showed higher photocatalytic activity under both UV and visible light irradiation.
關鍵字(中) ★ 二氧化鈦
★ 表面改質
★ 亞甲基藍
★ 光觸媒
關鍵字(英) ★ Titanium dioxide
★ Surface modification
★ Methylene blue
★ Photocatalyst
論文目次 中文摘要 i
Abstract ii
Table of Contents iii
List of Tables v
List of Figures vi
CHAPTER 1 INTRODUCTION 1
1.1 Heterogeneous Titanium dioxide photocatalyst 1
1.1.1 Properties of semiconductor 1
1.1.2 Characterization of TiO2 Structures 5
1.2 Titanium dioxide nanomaterial preparation by liquid phase synthesis 9
Sol-gel method 9
1.2.2 Co-precipitation method 11
1.2.3 Hydrothermal method 12
1.3 Titanium dioxide modification 12
1.3.1 Noble metal doping 13
1.3.2 Transition metal doping 15
1.3.3 Anion doping 16
1.3.4 Composite TiO2 16
1.3.5 Core-shell structure synthesis 17
1.4 Silver-modified TiO2 as photocatalyst 18
1.4.1 Mechenism of silver nitrate addition in TiO2 22
1.5 Application of photocatalyst 23
1.5.1 Volatile organic compounds degradation 23
1.5.2 Self-cleaning and hydrophilic surface 24
1.5.3 Water purification 25
CHAPTER 2 EXPERIMENTAL 29
2.1 Materials 29
2.2 Catalyst preparation 29
2.2.1 Synthesis of TiO2 and silver-modified TiO2 sols 29
2.2.2 Preparation of silver-modified thin film on glass substrate 31
2.3 Characterization 32
2.3.1 X-Ray Diffraction (XRD) 32
2.3.2 Transmission Electron Microscopy (TEM) and High-Resolution Transmission Electron Microscopy (HRTEM) 33
2.3.3 XPS 33
2.3.4 UV/vis Spectrophotometer 34
2.3.5 Dynamic Light Scanning (DLS) 34
2.4 Degradation of methylene blue 34
2.4.1 Photocatalytic activity under UV light irradiation 36
2.4.2 Photocatalytic activity under visible light irradiation 36
CHAPTER 3 SILVER-MODIFIED TiO2 THIN FILMON PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE 37
3.1 Results and discussion 37
3.1.1 Characteristics of TiO2 and silver-modified TiO2 37
3.1.3 TEM and HRTEM 39
3.1.4 ESCA 43
3.1.5 DLS 44
3.1.6 The absorption spectra by UV-vis 47
3.1.7 Photocatalytic destruction of methylene blue under visible light irradiation 49
3.1.8 Photocatalytic destruction of methylene blue under UV light irradiation 51
CHAPTER 4 ANTIBACTERIAL TEST OF SILVER-MODIFIED TiO2 54
4.1 Preparation of antibacterial test 54
4.2 Results of antibacterial test of silver-modified TiO2 54
5.1 Effect of TiO2 doping with silver on photocatalytic activity 57
5.2 Effect of TiO2 doping with silver on antibacterial test 57
References 58
參考文獻 Akira, K. and N. Hitoshi (1994). "Wetting Behavior of Liquid on Geometrical Rough Surface Formed by Photolithography." Japanese Journal of Applied Physics 33(9A): L1283.
Babapour, A., O. Akhavan, R. Azimirad and A. Z. Moshfegh (2006). "Physical characteristics of heat-treated nano-silvers dispersed in sol–gel silica matrix." Nanotechnology 17(3): 763.
Balek, V., D. Li, J. Šubrt, E. Večerníková, S. Hishita, T. Mitsuhashi and H. Haneda (2007). "Characterization of nitrogen and fluorine co-doped titania photocatalyst: Effect of temperature on microstructure and surface activity properties." Journal of Physics and Chemistry of Solids 68(5–6): 770-774.
Chen, Q., C. Tang and G. Zheng (2009). "First-principles study of anatase (1 0 1) surfaces doped with N." Physica B: Condensed Matter 404(8–11): 1074-1078.
Chen, W., A. Y. Fadeev, M. C. Hsieh, D. Öner, J. Youngblood and T. J. McCarthy (1999). "Ultrahydrophobic and Ultralyophobic Surfaces:  Some Comments and Examples." Langmuir 15(10): 3395-3399.
Choi, W., A. Termin and M. R. Hoffmann (1994). "Effects of Metal-Ion Dopants on the Photocatalytic Reactivity of Quantum-Sized TiO2 Particles." Angewandte Chemie International Edition in English 33(10): 1091-1092.
Choi, W., A. Termin and M. R. Hoffmann (1994). "The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics." The Journal of Physical Chemistry 98(51): 13669-13679.
Cojocaru, B., Ş. Neaţu, V. I. Pârvulescu, V. Şomoghi, N. Petrea, G. Epure, M. Alvaro and H. Garcia (2009). "Synergism of Activated Carbon and Undoped and Nitrogen-doped TiO2 in the Photocatalytic Degradation of the Chemical Warfare Agents Soman, VX, and Yperite." ChemSusChem 2(5): 427-436.
Dobosz, A. and A. Sobczyński (2003). "The influence of silver additives on titania photoactivity in the photooxidation of phenol." Water Research 37(7): 1489-1496.
Dvoranová, D., V. Brezová, M. Mazúr and M. A. Malati (2002). "Investigations of metal-doped titanium dioxide photocatalysts." Applied Catalysis B: Environmental 37(2): 91-105.
Epling, W. S., C. H. F. Peden, M. A. Henderson and U. Diebold (1998). "Evidence for oxygen adatoms on TiO2(110) resulting from O2 dissociation at vacancy sites." Surface Science 412–413: 333-343.
Fujishima, A., X. Zhang and D. A. Tryk (2008). "TiO2 photocatalysis and related surface phenomena." Surface Science Reports 63(12): 515-582.
Giannakopoulou, T., N. Todorova, C. Trapalis and T. Vaimakis (2007). "Effect of fluorine doping and SiO2 under-layer on the optical properties of TiO2 thin films." Materials Letters 61(23–24): 4474-4477.
Gole, J. L., J. D. Stout, C. Burda, Y. Lou and X. Chen (2004). "Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale." The Journal of Physical Chemistry B 108(4): 1230-1240.
Herrmann, J. M., H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe and A. Fernández (1997). "Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz." Applied Catalysis B: Environmental 13(3): 219-228.
Huang, D.-G., S.-J. Liao, J.-M. Liu, Z. Dang and L. Petrik (2006). "Preparation of visible-light responsive N–F-codoped TiO2 photocatalyst by a sol–gel-solvothermal method." Journal of Photochemistry and Photobiology A: Chemistry 184(3): 282-288.
Kang, M. (2003). "Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol." Journal of Molecular Catalysis A: Chemical 197(1–2): 173-183.
Karvinen, S., P. Hirva and T. A. Pakkanen (2003). "Ab initio quantum chemical studies of cluster models for doped anatase and rutile TiO2." Journal of Molecular Structure: THEOCHEM 626(1–3): 271-277.
Kim, C.-S., B. K. Moon, J.-H. Park, B.-C. Choi and H.-J. Seo (2003). "Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant." Journal of Crystal Growth 257(3–4): 309-315.
Kim, S. B. and S. C. Hong (2002). "Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst." Applied Catalysis B: Environmental 35(4): 305-315.
Kolen′ko, Y. V., A. A. Burukhin, B. R. Churagulov and N. N. Oleynikov (2003). "Synthesis of nanocrystalline TiO2 powders from aqueous TiOSO4 solutions under hydrothermal conditions." Materials Letters 57(5–6): 1124-1129.
Kudo, A. (2003). "Photocatalyst Materials for Water Splitting." Catalysis Surveys from Asia 7(1): 31-38.
Li, F. B. and X. Z. Li (2002). "Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment." Applied Catalysis A: General 228(1–2): 15-27.
Li, J., J. Xu, W.-L. Dai, H. Li and K. Fan (2009). "Direct hydro-alcohol thermal synthesis of special core–shell structured Fe-doped titania microspheres with extended visible light response and enhanced photoactivity." Applied Catalysis B: Environmental 85(3–4): 162-170.
Li, X., P.-L. Yue and C. Kutal (2003). "Synthesis and photocatalytic oxidation properties of iron doped titanium dioxide nanosemiconductor particles." New Journal of Chemistry 27(8): 1264-1269.
Li, X. Z., F. B. Li, C. L. Yang and W. K. Ge (2001). "Photocatalytic activity of WOx-TiO2 under visible light irradiation." Journal of Photochemistry and Photobiology A: Chemistry 141(2–3): 209-217.
Lin, Y. c. and C. h. Lin (2008). "Catalytic and photocatalytic degradation of ozone via utilization of controllable nano‐Ag modified on TiO2." Environmental Progress 27(4): 496-502.
Linsebigler, A. L., G. Lu and J. T. Yates (1995). "Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results." Chemical Reviews 95(3): 735-758.
Liu, S. X., Z. P. Qu, X. W. Han and C. L. Sun (2004). "A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide." Catalysis Today 93–95: 877-884.
Martin, S. T., C. L. Morrison and M. R. Hoffmann (1994). "Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles." The Journal of Physical Chemistry 98(51): 13695-13704.
Meichtry, J. M., V. Rivera, Y. Di Iorio, H. B. Rodriguez, E. S. Roman, M. A. Grela and M. I. Litter (2009). "Photoreduction of Cr(vi) using hydroxoaluminiumtricarboxymonoamide phthalocyanine adsorbed on TiO2." Photochemical & Photobiological Sciences 8(5): 604-612.
Moser, J., S. Punchihewa, P. P. Infelta and M. Graetzel (1991). "Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates." Langmuir 7(12): 3012-3018.
Ohno, T., M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura (2004). "Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light." Applied Catalysis A: General 265(1): 115-121.
Pedraza, F. and A. Vazquez (1999). "Obtention of TiO2 rutile at room temperature through direct Oxidation of TiCl3." Journal of Physics and Chemistry of Solids 60(4): 445-448.
Poznyak, S. K., A. I. Kokorin and A. I. Kulak (1998). "Effect of electron and hole acceptors on the photoelectrochemical behaviour of nanocrystalline microporous TiO2 electrodes." Journal of Electroanalytical Chemistry 442(1–2): 99-105.
Rauf, M. A. and S. S. Ashraf (2009). "Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution." Chemical Engineering Journal 151(1–3): 10-18.
Sato, S. (1986). "Photocatalytic activity of NOx-doped TiO2 in the visible light region." Chemical Physics Letters 123(1): 126-128.
Sonawane, R. S., S. G. Hegde and M. K. Dongare (2003). "Preparation of titanium(IV) oxide thin film photocatalyst by sol–gel dip coating." Materials Chemistry and Physics 77(3): 744-750.
Sonawane, R. S., B. B. Kale and M. K. Dongare (2004). "Preparation and photo-catalytic activity of FeTiO2 thin films prepared by sol–gel dip coating." Materials Chemistry and Physics 85(1): 52-57.
Tom, R. T., A. S. Nair, N. Singh, M. Aslam, C. L. Nagendra, R. Philip, K. Vijayamohanan and T. Pradeep (2003). "Freely Dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 Core−Shell Nanoparticles:  One-Step Synthesis, Characterization, Spectroscopy, and Optical Limiting Properties." Langmuir 19(8): 3439-3445.
Wang, W., J. Zhang, F. Chen, D. He and M. Anpo (2008). "Preparation and photocatalytic properties of Fe3+-doped Ag@TiO2 core–shell nanoparticles." Journal of Colloid and Interface Science 323(1): 182-186.
Wolfram, E., R. Faust and J. F. Padday (1978). "Wetting, spreading and adhesion." JF Padday, Ed.
Yildiz, A., S. B. Lisesivdin, M. Kasap and D. Mardare (2009). "Non-adiabatic small polaron hopping conduction in Nb-doped TiO2 thin film." Physica B: Condensed Matter 404(8–11): 1423-1426.
Yin, S., Y. Fujishiro, J. Wu, M. Aki and T. Sato (2003). "Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions." Journal of Materials Processing Technology 137(1–3): 45-48.
Yu, J., X. Zhao and Q. Zhao (2000). "Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method." Thin Solid Films 379(1–2): 7-14.
Zhang, T., T. Oyama, A. Aoshima, H. Hidaka, J. Zhao and N. Serpone (2001). "Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation." Journal of Photochemistry and Photobiology A: Chemistry 140(2): 163-172.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2016-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明