博碩士論文 103223061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.217.67.225
姓名 羅偉中(Wei-Zhong Luo)  查詢紙本館藏   畢業系所 化學學系
論文名稱 偶氮金屬配位化合物合成鑑定與性質探討
(Synthesis and Property of Metal Azo Compounds)
相關論文
★ 具有benzoxazole結構之無機液晶材料★ 以1,3,4-thiadiazole為架構之不對稱無機液晶材料
★ 新穎香蕉形液晶及對稱含萘環之液晶分子★ 香蕉形無機液晶
★ 具有benzoxazole結構之有機及無機液晶材料★ 以1,3,4-thiadiazole為架構之無機盤狀液晶材料
★ 以benzoxazole為架構之無機桿狀液晶★ 具有Quinoxaline結構之雙金屬無機液晶材料
★ 星型液晶材料及磷光發光材料之合成與研究★ 含pyrazole及isoxazole之有機桿狀液晶
★ 矽咔哚與矽螺旋雙笏物質之放光性質研究★ 具有Benzobisthiazoles和Benzobisoxazoles結構之盤狀液晶材料
★ 含 Benzoxazole 之對稱二聚物其奇偶效應的探討★ 以電腦模擬研究香蕉型液晶元的分子交互作用力
★ 極性取代基對於彎曲型液晶分子的影響★ 由彎曲型分子形成盤狀液晶之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 閃化學(flash chemistry)的有機合成,是指不穩定的中間物質,僅能
短時間存活,反應過程只需要一秒或更短的時間,無法使用常規的批
次反應達成。但在微流體反應系統中,比表面積大幅增加,熱傳及質
傳快速,能使反應快速的進行,故閃化學反應在微流體反應器中卻非
常適合。簡單調整實驗參數,便可使有機合成反應在微流體反應器中
得到理想的效果。本論文中利用微流體反應之系統合成4個偶氮化合
物並使之金屬化。
4個偶氮化合物的UV-Vis光譜中,呈現出明顯的π→π*峯訊和n→π*
峯訊。而偶氮化合物金屬化後,UV-Vis光譜中發現π→π*躍遷兩個峯
訊僅有輕微的位移和峯訊強度的變化,其他大致相同,但n→π*峯訊
因為金屬與配體鍵結的關係,產生紅移現象。
鉻(Cr3+)金屬偶氮配體化合物的ESI質譜分析,發現其中心Cr3+離子
在ESI過程中會還原成Cr2+。Cr2+水溶液離子交換速率比Na+水溶液離
子交換速率大約快2倍,游離化過程中產生陽離子交換,在質譜圖中
看到M及M-25的峯訊。
摘要(英) A flash reaction in organic chemistry is a reaction, in which an
unstable intermediate is with very short life and the reaction is completed
in one second or less. Consequently it is very difficult to conduct such a
reaction in common batch type setups to successfully obtain the end
product. On the other hand, a microfluidic reactor system exhibits very
large specific area in setup and has very great mass transfer and heat
transfer property. A microfluidic reactor allows fast heating or cooling,
and thus is suitable for a flash reaction and in general favoring rapid
reactions. One could achieve very good results to run organic reactions in
microfluidic reactors by simple adjustment of experimental parameters.
In this thesis, the preparation of 4 azobenzene derivatives was
successfully demonstrated using the microfluidic reactor system. The
azobenzenes were used as chelates to coordinate to chromium and iron to
form metallic azo-dyes.
The 4 azobenzenes and 8 metallic azo-dyes were studied with the
UV-Vis spectroscopic method. As ligands, the azobenzenes show clear
π−π* and n−π* absorption bands, while the metallic azo-dyes show slight
shift/change on π−π* absorption bands yet pronounced red-shifts on n−π*
absorption bands.
The 4 azobenzenes and 8 metallic azo-dyes were all analyzed with
mass spectroscopic method using the electrospray ionization source. The
Cr+3 azo-dyes were interesting in that the central Cr+3 metal ions along the ESI process could be reduced to Cr+2 metal ions that led to exchange of
Cr+2 metal ions with the counter Na+ metal ions. The negative mass
spectra of Cr+3 azo-dyes revealed very strong peaks at m/e = [M] and
[M-25], where M is the molecular ion, agreeing to the facile water
exchange rates for Cr+2 and Na+ but inert water exchange for Cr+3. No
such exchange was observed for the analogous Fe+3 azo-dyes: slow water
exchange being known for both Fe+3 and Fe+2 metal ions.
關鍵字(中) ★ 偶氮
★ 微流體
關鍵字(英)
論文目次 圖目錄..............................iv
表目錄.............................vii
附錄目錄......................... viii
摘要...............................xii
Abstract.........................xiii
謝誌….............................. xv
第一章、緒論..........................1
1-1 微流體反應器......................1
1-2 微流體反應器簡介...................2
1-3 微流體反應器在化學反應上的應用......4
1-4 偶氮苯............................7
1-5 偶氮苯的合成.......................8
1-6 偶氮化合物應用.....................9
1-7 偶氮金屬化合物發展.................10
1-8 光碟工作原理...................…...11
1-9 論文研究之目的....................12
第二章、實驗部分......................14
2-1 藥品.............................14
2-2 儀器.............................15
2-2-1 核磁共振譜儀(Nuclear Magnetic Resonance
Spectrometer, MR)...................15
2-2-2 紫外光可見光譜儀(Ultraviolet-visible
Spectrophotometer, UV-Vis)..................................16
2-2-3 質譜儀(Mass Spectrometer, MS)……................................16
2-2-4 紅外線光譜儀(Infrared Spectrophotometer, IR)………….16
2-2-5 單晶X光繞射儀...............17
2-2-6 酸鹼度計(pH meter) ..................18
2-2-7 推進幫..............................19
2-2-8 微流體反應系統.......................20
2-3 實驗流程...............................21
2-3-1 化合物1 (APSA-PMP)的製備.............22
2-3-2 化合物2 (APMS-PMP)的製備............23
2-3-3 化合物3 (4-DMAP-PMP)的製備..........25
2-3-4 化合物4 (5-DMAP-PMP)的製備.........26
2-3-5 化合物5 (APSA-PMP-Cr)的製備..........28
2-3-6 化合物6 (APSA-PMP-Fe)的製備..............29
2-3-7 化合物7 (APMS-PMP-Cr)的製...............30
2-3-8 化合物8 (APMS-PMP-Fe)的製備...........31
ii
2-3-9 化合物9 (4-DMAP-PMP-Cr)的製備..........32
2-3-10 化合物10 (4-DMAP-PMP-Fe)的製備........33
2-3-11 化合物11 (5-DMAP-PMP-Cr)的製備........34
2-3-12 化合物12 (5-DMAP-PMP-Fe)的製備........35
第三章、結果與討論............................36
3-1 微流反應系統之參數最佳化..................36
3-1-1 批次反應和微流反應比較...............36
3-1-2 微流反應系統........................37
3-2 配體及金屬鉗合化合物特色...............41
3-2-1 IR光譜.............................42
3-2-2 1H NMR光譜..........................46
3-2-3 單晶X-ray...........................47
3-2-4 UV-Vis光譜..........................55
3-3 中心金屬離子與鈉離子在ESI質譜分析過程中陽離子交換行
為......59
3-4 結論..................................64
第四章、參考文獻...........................65
第五章、附錄...............................69
參考文獻 1. Terry, S. C.; Jerman , J. H.; Angel, J. B. IEEE Trans. Electron Devices. 1979, 26, 1880-1886.
2. Haswell, S. J.; Middleton, R. J.; O’Sullivan, B.; Skelton, V.; Wattsa, P.; Styringb, P. Chem. Commun. 2001, 391-398.
3. Jahnisch, K.; Hessel, V.; Lowe, H.; Baerns, M. Angew. Chem. Int. Ed. 2004, 43, 406-446.
4. Yoshida, J. Flash Chemistry:Fast Chemical Synthesis in Flow Microreactors. In processdings of the 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences. 2010, 758-760.
5. Ehrfeld, H.; Hessel, V.; Löwe, H. Microreactors: New Technology
for Modern Chemistry. Wiley: Weinheim, 2000, p 7.
6. Wirth, T. Microreactors in Organic Synthesis and Catalysis Wiley: Weinheim, 2008, pp 124-127.
7. Whitesides, G. M. Nature 2006, 442, 368-373.
8. Schwalbe, T.; Autze, V.; Hohmann, M.; Stirner, W. Org. Process Res. Dev. 2004, 8, 440-454.
9. Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 2300-2318.
10. Plouffe, P.; Macchi, A. Org. Process Res. Dev. 2014, 18, 1286-1294.
11. Yoshida, J. Chem. Commun. 2005, 4509-4516.
12. Yoshida, J.; Takahashi, Y.; Nagaki, A. Chem. Commun. 2013, 49, 9896-9904.
13. Nagaki, A.; Kawamura, K.; Suga, S.; Ando, T.; Sawamoto, M.;Yoshida, J. J. Am. Chem. Soc. 2004, 126, 14702-14703.
14. Wiles, C.; Watts, P.; Haswell, S. J.; Pombo-Villar, E. Lab Chip 2002, 2, 62-64.
15. Wiles, C.; Watts, P.; Haswell, S. J.; Pombo-Villar, Lab Chip 2004, 4, 171-173.
16. Mitscherlich, E. Ann. Pharm. 1834, 12, 311-314.
17. Hofmann, P. Ann. Pharm. 1860, 324.
18. Glaser, C. Z. Chem. 1866, 308-310.
19. Hantzsch, A.; Reddelien, G. Die Diazoverbindungen. Springer: Berlin,1921
20. Merino, E. Chem. Soc. Rev. 2011, 40, 3835-3853.
21. Hartley, G. S. J. Chem. Soc. 1938, 633.
22. Koh J,; Greaves A. Dye Pigm. 2001, 50, 117-126.
23. Wang, S.; Shen, S.; Xu, H. Dye Pigm. 2000, 44, 195-198.
24. Li, X.; Wu, Y.; Gu, D.; Gan, F. Mat. Scu. E. B. 2009, 158, 53-57
25. Gan, F.; Hou, L.; Wang, G.; Liu, H. Mat. Scu. E. B. 2000, 76, 63-68.
26. Sabi, Y.; Tamada, S.; Iwamura, T.; Oyamada, M.; Bruder, F.; Oster, R. Berneth, H. Hassenrück, K. Jpn. J. Appl. Phys., Part 1. 2003, 42, 1056-1058.
27. Chen, Z.; Wu, Y.; Gu, D.; Gan, F. Dye Pigm. 2008, 76, 624-631.
28. Li, X.; Wu,Y.; Gu, D.; Gan, F. Dye Pigm. 2010, 86, 182-189.
29. Garrigos, M. C.; Reche, F.; Marin, M. L. J. Chromatogr. A. 2002, 976, 309-317.
30. Karaman, Y.; Menek, N.; Bicer, F.A.; Olmez,H. Int. J.
Electrochem.Soc. 2015, 10, 3106-3116. 66
31. Wang, S.; Shen, S.; Xu, H.; Gu, D.; Yin, J.; Tang, X. Dye Pigm. 1999, 42, 173-177.
32. Wang, S.; Shen, S.; Xu, H.; Gu, D.; Yin, J.; Tang, X.; Mater. Sci. Eng. B. 2000, 76, 69-72.
33. Song, H.; Chen, K.; Tian, H. Dye Pigm. 2002, 53, 257 -262.
34. Tsutomu, S.; Yasunobu, U. Optical Recording Medium.
JP2001180119, 2001.
35. Yasuhiro, A.; Yasunobu, U. Optical Recording Medium.
JP2002144724, 2002.
36. Geng, Y.; Gu, D.; Gan, F. Mater. Sci. Eng. B. 2004, 110, 115-118.
37. Park, H.; Kim, E.; Kim, D.; Lee, H. Bull. Chem. Soc. Jpn. 2002, 75, 2067-2070.
38. Gan, F.; Hou, L. Proceeding of SPIE. 2003, 5060,1-6.
39. Huang, T.; Lu, Y.; Liao, W.; Huang, C. IEEE Trans Magn 2007, 43, 867-869.
40. Chang, D.; Yoon, D.; Ro, M.; Hwang, I.; Park, I.; Shin, D. Jpn. J. Appl. Phys. 2003, 42, 754-758.
41. Chen, Z.; Wu, Y.; Gu, D.; Gan, F. Dye Pigm. 2008, 76, 624-631. 42. Takashi, M.; Yutaka, K. WO 2006104196, 2006.
43. Horie, M.; Kurose, Y.; Kubo, H.; Kiyono, K. WO2006009107, 2006.
44. Takashi, M.; Hisashi, S.; Kenichi, S.; Mayumi, K.; Naoyuki, U.; Hideki, T. WO2007007748, 2007.
45. Eigen, M. Pure Appl. Chem.1963, 6,105.
46. Peng, Q.; Li,M.; Gao, K.; Cheng, L. Dye Pigm. 1990, 14, 89-99.
47. Li, X.; Wu,Y.; Gu ,D.; Gan, F. Dye Pigm. 2010, 86, 182-189.
48. Saeyda, A. A.; Sanaa, M. E.; Magdy, W. P.; Esam, M. E. J. Mol.Struct. 2015 1099, 567-578.
49. Li, X. Y.; Wu, Y. Q.; Gua, D. D.; Gana, F. X.; Mater. Sci. Eng. B. 2009, 158 , 53–57.
50. Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Sumathi, S. Spectrochim. Acta A. 2012, 96, 493–500.
51. Ozkan, G.; Kose, M.; Zengin, H.; McKee, V.; Kurtoglu, M. Spectrochim Acta A. 2015, 150, 966–973.
52. Anitha, C.; Sheela, C.; D.Tharmaraj, P.; Sumathi S. Spectrochim. Acta A. 2012, 96, 493–500.
68
指導教授 劉陵崗、賴重光 審核日期 2016-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明