博碩士論文 102324067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.119.107.96
姓名 周致羽(Chih-Yu Chou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究
(Glyme solvents based on Mg(BH4)2 as electrolyte for magnesium hybrid batteries)
相關論文
★ 鉬系材料應用於鎂電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 奈米結構之Au/MnO2複合陰極觸媒材料★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材
★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究
★ IMPS於Ag-In-S半導體薄膜之分析與應用★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性
★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究
★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質★ 電化學分解水之電極材料製備與效率探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 鎂有著低成本、低汙染、高地殼含量、高能量密度及高安全性的特點,使之成為吸引人的二次電池負極選項,但鎂離子電池發展面臨著兩大困難,其一為鎂的高化學活性使表面產生鈍化層,使電解液的發展受到相當程度的限制;其二為正極材料的開發,正二價的鎂離子帶有強大的靜電吸引力,導致離子擴散能力較差,使得現階段能夠以鎂離子進行嵌入嵌出反應的材料仍非常稀少。
  本研究選用MoS2作為活性物質,在僅有鎂離子存在之APC電解液時,幾乎無法儲能,但添加鋰離子於電解液中便可使此材料進行儲能,且其電化學行為與MoS2作用於鋰離子電池相當類似,電化學性質會隨著鋰離子濃度的增加而提昇,電容量從45提升至166 mA h/g,充放電速度提升至1000 mA/g時,電容量從14提升至107 mA h/g,高速維持率從31% 提升至64%,在此材料中離子導電度扮演著左右其儲能性質的角色。
為提升鎂離子電池的實用性,本實驗以不含氯化物之Mg(BH4)2及乙二醇醚類溶劑 (Glyme-based solvent) 做系統性的探討,在不同基材、溫度、濃度、溶劑及鋰鈉鹽的添加皆有不同影響,其中添加LiBH4與NaBH4皆使其電化學性質戲劇性地增加。以MoS2及其石墨烯複合材,進行硼氫化物-乙二醇醚類雙鹽電解液性能比較,Diglyme溶劑之MBH雙鹽電解液性質最佳,而Triglyme及Tetraglyme由於黏度增高導致電容量下降,但考量安全性與實用性,高沸點之乙二醇醚類溶劑及不含氯化物之Mg(BH4)2仍有望取代APC電解液用於鎂離子電池。
  本研究首次展示嵌入嵌出材料作為鈉鎂複合電池的可能性,但在低速充放電時電容量表現仍有待改善,但其高速維持率高達76%,相較鋰離子與鋰鎂複合電池系統顯示出更為優異的高速嵌入嵌出能力,從EIS分析可發現鈉鎂複合電池之電荷轉移阻抗極大,可提供改善鈉鎂複合電池系統之方向。
摘要(英) Magnesium is an attractive anode material for secondary batteries because of low cost, low pollution, abundance, high energy density and high safety. However, there are two major obstacle in developing ideal magnesium ion batteries (MIBs). The first one is the formation of passivation layer on the surface due to the high chemical activity of magnesium. This result in restrictions on selecting suitable electrolytes. The other one is the strong coulombic interaction between Mg2+ and the intercalation host, which makes the ion diffusion sluggish, creating a barrier for the development of the cathode materials for MIBs.
In this study, MoS2 is chosen as the active material which Mg2+ ion cannot intercalate/deintercalate into the host structure in the presence of APC electrolyte. After adding the lithium salt (LiCl) in the APC electrolyte, the Mg//MoS2 cell starts storing energy and its electrochemical behavior is very similar to MoS2 in lithium-ion battery system. The electrochemical performances significantly increase with the increase of lithium-ion concentration. At low concentration (0.1 M), the cell delivers reversible capacity of 45 mAh/g (at 25 mA/g), whereas at high concentration (0.7 M) the cell delivers superior capacity of 166 mAh/g. Similarly, the cell with high concentration of Li salt showed excellent high rate retention of 64% at 1000 mA/g, whereas the cell with low concentration of Li salt showed poor retention of 31%. The ion mobility is believed to play important role in electrochemical performance.
After showing the remarkable benefits of dual-salts electrolyte, it is worth expanding this concept to other electrolytes, which have the nature of high safety and environmental friendliness. Therefore, we introduce Mg(BH4)2 salt and Glyme-based solvents as electrolyte. The present study indicate that substrates, temperature, concentration, solvent and the additive effects the reversibility of Magnesium deposition and dissolution. The study showed addition of LiBH4 and NaBH4 can improve the electrochemical performance of MIBs to a greater extent. To investigate the properties of different dual-salts Mg(BH4)2 (MBH) electrolyte, MoS2/Graphene composite is chosen as the active material. Among them, MBH-diglyme electrolyte delivered highest capacity, whereas MBH-triglyme and MBH-tetraglyme electrolytes showed slightly decreased capacity owing to their high viscosity. Despite the electrochemical performance between MBH and APC electrolyte are similar, MBH electrolyte is expected to replace APC electrolyte for practical application.
This study reports the possibility of Na/Mg hybrid battery based on intercalated cathode material for the first time. Compared to lithium-ion and Li/Mg hybrid battery, the high rate retention of Na/Mg hybrid battery is much higher (up to 76%) but the capacity at low current density needs to be further improved. These results provide insight for further development of Na/Mg hybrid battery.
關鍵字(中) ★ 鎂電池
★ 複合電池
★ 雙鹽系統
★ 硫化鉬
★ 硼氫化物
關鍵字(英) ★ Magnesium Battery
★ Hybrid battery
★ dual-salts
★ MoS2
★ Borohydride
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xiv
一、緒論 1
1-1 前言 1
1-2 研究動機 2
二、文獻回顧 3
2-1 鎂離子電池的發展 3
2-1-1 正極材料 4
2-1-2 電解液 4
2-1-3 複合電池 (Hybrid battery) 9
2-2 二硫化鉬(Molybdenum disulfide, MoS2) 20
2-2-1 用於鋰離子電池 20
2-2-2 用於鈉離子電池 21
2-2-3 用於鎂離子電池 22
2-3 乙二醇醚溶劑 (Glyme-based sovent) 25
三、實驗方法及步驟 27
3-1 活性材料製備 27
3-1-1 MoS2及其石墨烯複合材之製備 27
3-2 鈕扣型電池製備 27
3-2-1 工作電極之製備 28
3-2-2 參考電極前處理 29
3-2-3 電解液之調配 30
3-2-3-1 APC電解液之調配 30
3-2-3-2 硼氫化物電解液之調配 30
3-2-4 鈕扣型電池之組裝 31
3-3 材料特性鑑定 32
3-3-1 活性物質之表面形貌分析 32
3-3-2 活性物質之結晶結構分析 32
3-4 電化學分析 32
3-4-1 線性掃描伏安法 (Linear sweep voltammetry, LSV) 33
3-4-2 循環伏安法 (Cyclic voltammetry, CV) 33
3-4-3 計時電位法 (Chronopotentimetry, CP) 35
3-4-4 交流阻抗 (Electrochemical impedance spectroscopy, EIS) 36
四、 結果與討論 38
4-1 MoS2及其石墨烯複合材 38
4-1-1 表面形貌及材料結構分析 38
4-2 MoS2電極於不同濃度APC-LiCl雙鹽電解液 41
4-2-1 電化學特性 41
4-2-2 MoS2電極於APC-LiCl雙鹽電解液之反應機構探討 53
4-3 Mg(BH4)2電解液特性分析 55
4-3-1 不同基材 (Pt, Al, Cu, Ni, SS) 55
4-3-2 不同調配溫度 (25 °C, 90 °C) 60
4-3-3 不同電解液濃度 (0.1 M, 0.4 M) 63
4-3-4 不同乙二醇醚類溶劑 (Diglyme, Triglyme, Tetraglyme) 66
4-3-5 添加LiBH4於Mg(BH4)2電解液 70
4-3-6 添加NaBH4於Mg(BH4)2電解液 73
4-4 MoS2電極於不同溶劑之MBH-LiBH4雙鹽電解液 76
4-4-1 電化學特性 76
4-5 MoS2電極於MBH-NaBH4雙鹽電解液 90
4-5-1 電化學特性 90
五、結論 97
參考文獻 99
附錄 109
參考文獻 1. 徐晟睿, 鉬系材料應用於鎂電池正極之性質研究. 國立中央大學化學工程與材料工程學系碩士論文, 2015.
2. Yoo, H.D., I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, and D. Aurbach, Mg rechargeable batteries: an on-going challenge. Energy & Environmental Science, 2013. 6(8): p. 2265.
3. Malyi, O.I., T.L. Tan, and S. Manzhos, In search of high performance anode materials for Mg batteries: Computational studies of Mg in Ge, Si, and Sn. Journal of Power Sources, 2013. 233: p. 341-345.
4. Parent, L.R., Y. Cheng, P.V. Sushko, Y. Shao, J. Liu, C.M. Wang, and N.D. Browning, Realizing the full potential of insertion anodes for mg-ion batteries through the nanostructuring of sn. Nano Lett, 2015. 15(2): p. 1177-82.
5. Aurbach, D., Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, and E. Levi, Prototype systems for rechargeable magnesium batteries. Nature, 2000. 407(6805): p. 724-727.
6. Shklover, V., T. Haibach, F. Ried, R. Nesper, and P. Novák, Crystal Structure of the Product of Mg2+Insertion into V2O5Single Crystals. Journal of Solid State Chemistry, 1996. 123(2): p. 317-323.
7. Le, D.B., S. Passerini, F. Coustier, J. Guo, T. Soderstrom, B.B. Owens, and W.H. Smyrl, Intercalation of Polyvalent Cations into V2O5 Aerogels. Chemistry of Materials, 1998. 10(3): p. 682-684.
8. Yu, L. and X. Zhang, Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content. J Colloid Interface Sci, 2004. 278(1): p. 160-5.
9. Jiao, L., H. Yuan, Y. Wang, J. Cao, and Y. Wang, Mg intercalation properties into open-ended vanadium oxide nanotubes. Electrochemistry Communications, 2005. 7(4): p. 431-436.
10. Jiao, L., H. Yuan, Y. Si, Y. Wang, J. Cao, X. Gao, M. Zhao, X. Zhou, and Y. Wang, Electrochemical insertion of magnesium in open-ended vanadium oxide nanotubes. Journal of Power Sources, 2006. 156(2): p. 673-676.
11. Inamoto, M., H. Kurihara, and T. Yajima, Electrode Performance of Vanadium Pentoxide Xerogel Prepared by Microwave Irradiation as an Active Cathode Material for Rechargeable Magnesium Batteries. Electrochemistry, 2012. 80(6): p. 421-422.
12. Gershinsky, G., H.D. Yoo, Y. Gofer, and D. Aurbach, Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir, 2013. 29(34): p. 10964-72.
13. Lee, S.H., R.A. DiLeo, A.C. Marschilok, K.J. Takeuchi, and E.S. Takeuchi, Sol Gel Based Synthesis and Electrochemistry of Magnesium Vanadium Oxide: A Promising Cathode Material for Secondary Magnesium Ion Batteries. ECS Electrochemistry Letters, 2014. 3(8): p. A87-A90.
14. Sai Gautam, G., P. Canepa, A. Abdellahi, A. Urban, R. Malik, and G. Ceder, The Intercalation Phase Diagram of Mg in V2O5from First-Principles. Chemistry of Materials, 2015: p. 150508081326003.
15. Wang, H., Y. Bai, S. Chen, X. Luo, C. Wu, F. Wu, J. Lu, and K. Amine, Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl Mater Interfaces, 2015. 7(1): p. 80-4.
16. Nam, K.W., S. Kim, S. Lee, M. Salama, I. Shterenberg, Y. Gofer, J.S. Kim, E. Yang, C.S. Park, J.S. Kim, S.S. Lee, W.S. Chang, S.G. Doo, Y.N. Jo, Y. Jung, D. Aurbach, and J.W. Choi, The High Performance of Crystal Water Containing Manganese Birnessite Cathodes for Magnesium Batteries. Nano Lett, 2015. 15(6): p. 4071-9.
17. Zhang, R., X. Yu, K.-W. Nam, C. Ling, T.S. Arthur, W. Song, A.M. Knapp, S.N. Ehrlich, X.-Q. Yang, and M. Matsui, α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochemistry Communications, 2012. 23: p. 110-113.
18. Zhang, R., T.S. Arthur, C. Ling, and F. Mizuno, Manganese dioxides as rechargeable magnesium battery cathode; synthetic approach to understand magnesiation process. Journal of Power Sources, 2015. 282: p. 630-638.
19. Incorvati, J.T., L.F. Wan, B. Key, D. Zhou, C. Liao, L. Fuoco, M. Holland, H. Wang, D. Prendergast, K.R. Poeppelmeier, and J.T. Vaughey, Reversible Magnesium Intercalation into a Layered Oxyfluoride Cathode. Chemistry of Materials, 2015.
20. Hsu, C.J., C.Y. Chou, C.H. Yang, T.C. Lee, and J.K. Chang, MoS2/graphene cathodes for reversibly storing Mg(2+) and Mg(2+)/Li(+) in rechargeable magnesium-anode batteries. Chem Commun (Camb), 2016. 52(8): p. 1701-4.
21. Liang, Y., R. Feng, S. Yang, H. Ma, J. Liang, and J. Chen, Rechargeable Mg batteries with graphene-like MoS(2) cathode and ultrasmall Mg nanoparticle anode. Adv Mater, 2011. 23(5): p. 640-3.
22. Pereira, A.O. and C.R. Miranda, First-Principles Investigation of Transition Metal Dichalcogenide Nanotubes for Li and Mg Ion Battery Applications. The Journal of Physical Chemistry C, 2015. 119(8): p. 4302-4311.
23. Xiao-Lin Li , Y.-D.L., MoS2 Nanostructures: Synthesis and Electrochemical Mg2+ Intercalation.pdf. The Journal of Physical Chemistry B, 2004. 108.
24. Yang, S., D. Li, T. Zhang, Z. Tao, and J. Chen, First-Principles Study of Zigzag MoS2Nanoribbon As a Promising Cathode Material for Rechargeable Mg Batteries. The Journal of Physical Chemistry C, 2012. 116(1): p. 1307-1312.
25. Liang, Y., H.D. Yoo, Y. Li, J. Shuai, H.A. Calderon, F.C. Robles Hernandez, L.C. Grabow, and Y. Yao, Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett, 2015. 15(3): p. 2194-202.
26. Liu, Y., L. Jiao, Q. Wu, J. Du, Y. Zhao, Y. Si, Y. Wang, and H. Yuan, Sandwich-structured graphene-like MoS2/C microspheres for rechargeable Mg batteries. Journal of Materials Chemistry A, 2013. 1(19): p. 5822.
27. Liu, Y., L. Jiao, Q. Wu, Y. Zhao, K. Cao, H. Liu, Y. Wang, and H. Yuan, Synthesis of rGO-supported layered MoS2 for high-performance rechargeable Mg batteries. Nanoscale, 2013. 5(20): p. 9562-7.
28. He, D., D. Wu, J. Gao, X. Wu, X. Zeng, and W. Ding, Flower-like CoS with nanostructures as a new cathode-active material for rechargeable magnesium batteries. Journal of Power Sources, 2015. 294: p. 643-649.
29. Orikasa, Y., T. Masese, Y. Koyama, T. Mori, M. Hattori, K. Yamamoto, T. Okado, Z.D. Huang, T. Minato, C. Tassel, J. Kim, Y. Kobayashi, T. Abe, H. Kageyama, and Y. Uchimoto, High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci Rep, 2014. 4: p. 5622.
30. Li, Y., Y. Nuli, J. Yang, T. Yilinuer, and J. Wang, MgFeSiO4 prepared via a molten salt method as a new cathode material for rechargeable magnesium batteries. Chinese Science Bulletin, 2011. 56(4-5): p. 386-390.
31. NuLi, Y., Y. Zheng, Y. Wang, J. Yang, and J. Wang, Electrochemical intercalation of Mg2+ in 3D hierarchically porous magnesium cobalt silicate and its application as an advanced cathode material in rechargeable magnesium batteries. Journal of Materials Chemistry, 2011. 21(33): p. 12437.
32. Lukatskaya, M.R., O. Mashtalir, C.E. Ren, Y. Dall′Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, and Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013. 341(6153): p. 1502-5.
33. Levi, M.D., M.R. Lukatskaya, S. Sigalov, M. Beidaghi, N. Shpigel, L. Daikhin, D. Aurbach, M.W. Barsoum, and Y. Gogotsi, Solving the Capacitive Paradox of 2D MXene using Electrochemical Quartz-Crystal Admittance and In Situ Electronic Conductance Measurements. Advanced Energy Materials, 2015. 5(1): p. 1400815.
34. Wang, R.Y., C.D. Wessells, R.A. Huggins, and Y. Cui, Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett, 2013. 13(11): p. 5748-52.
35. Mizuno, Y., M. Okubo, E. Hosono, T. Kudo, K. Oh-ishi, A. Okazawa, N. Kojima, R. Kurono, S.-i. Nishimura, and A. Yamada, Electrochemical Mg2+ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes. Journal of Materials Chemistry A, 2013. 1(42): p. 13055.
36. Watkins, T., A. Kumar, and D.A. Buttry, Designer Ionic Liquids for Reversible Electrochemical Deposition/Dissolution of Magnesium. J Am Chem Soc, 2016. 138(2): p. 641-50.
37. See, K.A., K.W. Chapman, L. Zhu, K.M. Wiaderek, O.J. Borkiewicz, C.J. Barile, P.J. Chupas, and A.A. Gewirth, The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions. J Am Chem Soc, 2016. 138(1): p. 328-37.
38. Aurbach, D., G.S. Suresh, E. Levi, A. Mitelman, O. Mizrahi, O. Chusid, and M. Brunelli, Progress in Rechargeable Magnesium Battery Technology. Advanced Materials, 2007. 19(23): p. 4260-4267.
39. Mohtadi, R. and F. Mizuno, Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein J Nanotechnol, 2014. 5: p. 1291-311.
40. Muldoon, J., C.B. Bucur, and T. Gregory, Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev, 2014. 114(23): p. 11683-720.
41. Saha, P., M.K. Datta, O.I. Velikokhatnyi, A. Manivannan, D. Alman, and P.N. Kumta, Rechargeable magnesium battery: Current status and key challenges for the future. Progress in Materials Science, 2014. 66: p. 1-86.
42. Shterenberg, I., M. Salama, Y. Gofer, E. Levi, and D. Aurbach, The challenge of developing rechargeable magnesium batteries. MRS Bulletin, 2014. 39(05): p. 453-460.
43. Bucur, C.B., T. Gregory, A.G. Oliver, and J. Muldoon, Confession of a Magnesium Battery. The Journal of Physical Chemistry Letters, 2015: p. 3578-3591.
44. Massé, R.C., E. Uchaker, and G. Cao, Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries. Science China Materials, 2015. 58(9): p. 715-766.
45. Choi, J.W. and D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials, 2016. 1(4): p. 16013.
46. Song, J., E. Sahadeo, M. Noked, and S.B. Lee, Mapping the Challenges of Magnesium Battery. J Phys Chem Lett, 2016. 7(9): p. 1736-49.
47. Gaddum, L.W. and H.E. French, THE ELECTROLYSIS OF GRIGNARD SOLUTIONS1. Journal of the American Chemical Society, 1927. 49(5): p. 1295-1299.
48. Gofer, Y., O. Chusid, H. Gizbar, Y. Viestfrid, H.E. Gottlieb, V. Marks, and D. Aurbach, Improved Electrolyte Solutions for Rechargeable Magnesium Batteries. Electrochemical and Solid-State Letters, 2006. 9(5): p. A257.
49. Mizrahi, O., N. Amir, E. Pollak, O. Chusid, V. Marks, H. Gottlieb, L. Larush, E. Zinigrad, and D. Aurbach, Electrolyte Solutions with a Wide Electrochemical Window for Rechargeable Magnesium Batteries. Journal of The Electrochemical Society, 2008. 155(2): p. A103.
50. Nakayama, Y., Y. Kudo, H. Oki, K. Yamamoto, Y. Kitajima, and K. Noda, Complex Structures and Electrochemical Properties of Magnesium Electrolytes. Journal of The Electrochemical Society, 2008. 155(10): p. A754.
51. WANGJiu-Lin, S.S.-J.N.Y.-N.F.T.Y., Effects of Cathode Current Collectors on the Electrochemical Performance of Rechargeable Magnesium Batteries.pdf. Acta Phys. -Chim. January Sin, 2015: p. 111-120.
52. Wall, C., Z. Zhao-Karger, and M. Fichtner, Corrosion Resistance of Current Collector Materials in Bisamide Based Electrolyte for Magnesium Batteries. ECS Electrochemistry Letters, 2015. 4(1): p. C8-C10.
53. Feng, Z., Y. NuLi, J. Wang, and J. Yang, Study of Key Factors Influencing Electrochemical Reversibility of Magnesium Deposition and Dissolution. Journal of The Electrochemical Society, 2006. 153(10): p. C689.
54. Lv, D., T. Xu, P. Saha, M.K. Datta, M.L. Gordin, A. Manivannan, P.N. Kumta, and D. Wang, A Scientific Study of Current Collectors for Mg Batteries in Mg(AlCl2EtBu)2/THF Electrolyte. Journal of the Electrochemical Society, 2012. 160(2): p. A351-A355.
55. Yagi, S., A. Tanaka, Y. Ichikawa, T. Ichitsubo, and E. Matsubara, Electrochemical Stability of Magnesium Battery Current Collectors in a Grignard Reagent-Based Electrolyte. Journal of the Electrochemical Society, 2013. 160(3): p. C83-C88.
56. Cheng, Y., T. Liu, Y. Shao, M.H. Engelhard, J. Liu, and G. Li, Electrochemically stable cathode current collectors for rechargeable magnesium batteries. Journal of Materials Chemistry A, 2014. 2(8): p. 2473.
57. Pour, N., Y. Gofer, D.T. Major, and D. Aurbach, Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. J Am Chem Soc, 2011. 133(16): p. 6270-8.
58. Gregory, T.D., R.J. Hoffman, and R.C. Winterton, Nonaqueous Electrochemistry of Magnesium: Applications to Energy Storage. Journal of The Electrochemical Society, 1990. 137(3): p. 775-780.
59. Doe, R.E., R. Han, J. Hwang, A.J. Gmitter, I. Shterenberg, H.D. Yoo, N. Pour, and D. Aurbach, Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem Commun (Camb), 2014. 50(2): p. 243-5.
60. Mohtadi, R., M. Matsui, T.S. Arthur, and S.J. Hwang, Magnesium borohydride: from hydrogen storage to magnesium battery. Angew Chem Int Ed Engl, 2012. 51(39): p. 9780-3.
61. Shao, Y., N.N. Rajput, J. Hu, M. Hu, T. Liu, Z. Wei, M. Gu, X. Deng, S. Xu, K.S. Han, J. Wang, Z. Nie, G. Li, K.R. Zavadil, J. Xiao, C. Wang, W.A. Henderson, J.-G. Zhang, Y. Wang, K.T. Mueller, K. Persson, and J. Liu, Nanocomposite polymer electrolyte for rechargeable magnesium batteries. Nano Energy, 2015. 12: p. 750-759.
62. Carter, T.J., R. Mohtadi, T.S. Arthur, F. Mizuno, R. Zhang, S. Shirai, and J.W. Kampf, Boron clusters as highly stable magnesium-battery electrolytes. Angew Chem Int Ed Engl, 2014. 53(12): p. 3173-7.
63. Tutusaus, O., R. Mohtadi, T.S. Arthur, F. Mizuno, E.G. Nelson, and Y.V. Sevryugina, An Efficient Halogen-Free Electrolyte for Use in Rechargeable Magnesium Batteries. Angew Chem Int Ed Engl, 2015. 54(27): p. 7900-4.
64. Ha, S.Y., Y.W. Lee, S.W. Woo, B. Koo, J.S. Kim, J. Cho, K.T. Lee, and N.S. Choi, Magnesium(II) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl Mater Interfaces, 2014. 6: p. 4063-73.
65. Cheng, Y., Y. Shao, J.G. Zhang, V.L. Sprenkle, J. Liu, and G. Li, High performance batteries based on hybrid magnesium and lithium chemistry. Chem Commun (Camb), 2014. 50(68): p. 9644-6.
66. Su, S., Z. Huang, Y. NuLi, F. Tuerxun, J. Yang, and J. Wang, A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chem Commun (Camb), 2015.
67. Su, S., Y. NuLi, Z. Huang, Q. Miao, J. Yang, and J. Wang, A High-Performance Rechargeable Mg(2+)/Li(+) Hybrid Battery Using One-Dimensional Mesoporous TiO2(B) Nanoflakes as the Cathode. ACS Appl Mater Interfaces, 2016. 8(11): p. 7111-7.
68. Wu, N., Z.Z. Yang, H.R. Yao, Y.X. Yin, L. Gu, and Y.G. Guo, Improving the electrochemical performance of the li4 ti5 o12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. Angew Chem Int Ed Engl, 2015. 54(19): p. 5757-61.
69. Zhang, Y., J. Xie, Y. Han, and C. Li, Dual-Salt Mg-Based Batteries with Conversion Cathodes. Advanced Functional Materials, 2015. 25(47): p. 7300-7308.
70. Walter, M., K.V. Kravchyk, M. Ibáñez, and M.V. Kovalenko, Efficient and Inexpensive Sodium–Magnesium Hybrid Battery. Chemistry of Materials, 2015.
71. Gao, T., F. Han, Y. Zhu, L. Suo, C. Luo, K. Xu, and C. Wang, Hybrid Mg2+/Li+Battery with Long Cycle Life and High Rate Capability. Advanced Energy Materials, 2014: p. n/a-n/a.
72. Yoo, H.D., Y. Liang, Y. Li, and Y. Yao, High areal capacity hybrid magnesium-lithium-ion battery with 99.9% coulombic efficiency for large-scale energy storage. ACS Appl Mater Interfaces, 2015. 7(12): p. 7001-7.
73. Yagi, S., T. Ichitsubo, Y. Shirai, S. Yanai, T. Doi, K. Murase, and E. Matsubara, A concept of dual-salt polyvalent-metal storage battery. Journal of Materials Chemistry A, 2014. 2(4): p. 1144.
74. Zhang, Z., H. Xu, Z. Cui, P. Hu, J. Chai, H. Du, J. He, J. Zhang, X. Zhou, P. Han, G. Cui, and L. Chen, High energy density hybrid Mg2+/Li+battery with superior ultra-low temperature performance. J. Mater. Chem. A, 2016. 4(6): p. 2277-2285.
75. Nelson, E.G., S.I. Brody, J.W. Kampf, and B.M. Bartlett, A magnesium tetraphenylaluminate battery electrolyte exhibits a wide electrochemical potential window and reduces stainless steel corrosion. J. Mater. Chem. A, 2014. 2(43): p. 18194-18198.
76. Miao, Q., Y. NuLi, N. Wang, J. Yang, J. Wang, and S.-i. Hirano, Effect of Mg2+/Li+mixed electrolytes on a rechargeable hybrid battery with Li4Ti5O12cathode and Mg anode. RSC Adv., 2016. 6(4): p. 3231-3234.
77. Gao, T., M. Noked, A.J. Pearse, E. Gillette, X. Fan, Y. Zhu, C. Luo, L. Suo, M.A. Schroeder, K. Xu, S.B. Lee, G.W. Rubloff, and C. Wang, Enhancing the Reversibility of Mg/S Battery Chemistry through Li(+) Mediation. J Am Chem Soc, 2015. 137(38): p. 12388-93.
78. Pan, W., X. Liu, X. Miao, J. Yang, J. Wang, Y. Nuli, and S.-i. Hirano, Molybdenum dioxide hollow microspheres for cathode material in rechargeable hybrid battery using magnesium anode. Journal of Solid State Electrochemistry, 2015.
79. Sun, X., V. Duffort, and L.F. Nazar, Prussian Blue MgLi Hybrid Batteries. Advanced Science, 2016.
80. Shao, Y., T. Liu, G. Li, M. Gu, Z. Nie, M. Engelhard, J. Xiao, D. Lv, C. Wang, J.G. Zhang, and J. Liu, Coordination chemistry in magnesium battery electrolytes: how ligands affect their performance. Sci Rep, 2013. 3: p. 3130.
81. Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. Nature, 2013. 499(7459): p. 419-25.
82. Stephenson, T., Z. Li, B. Olsen, and D. Mitlin, Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci., 2014. 7(1): p. 209-231.
83. Pumera, M., Z. Sofer, and A. Ambrosi, Layered transition metal dichalcogenides for electrochemical energy generation and storage. Journal of Materials Chemistry A, 2014. 2(24): p. 8981.
84. Chhowalla, M., H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013. 5(4): p. 263-275.
85. Park, J., J.-S. Kim, J.-W. Park, T.-H. Nam, K.-W. Kim, J.-H. Ahn, G. Wang, and H.-J. Ahn, Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization. Electrochimica Acta, 2013. 92: p. 427-432.
86. Fang, X., C. Hua, X. Guo, Y. Hu, Z. Wang, X. Gao, F. Wu, J. Wang, and L. Chen, Lithium storage in commercial MoS2 in different potential ranges. Electrochimica Acta, 2012. 81: p. 155-160.
87. Du, G., Z. Guo, S. Wang, R. Zeng, Z. Chen, and H. Liu, Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem Commun (Camb), 2010. 46(7): p. 1106-8.
88. Shaokun Tanga and Hua Zhaob, Glymes as Versatile Solvents for Chemical Reactions and Processes: from the Laboratory to Industry. RSC Adv., 2014. 4(22): p. 11251-11287.
89. 胡啟章, 電化學原理與方法. 五南圖書出版公司, 2002.
90. Cho, J.H., M. Aykol, S. Kim, J.H. Ha, C. Wolverton, K.Y. Chung, K.B. Kim, and B.W. Cho, Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. J Am Chem Soc, 2014. 136(46): p. 16116-9.
91. Tuerxun, F., Y. Abulizi, Y. NuLi, S. Su, J. Yang, and J. Wang, High concentration magnesium borohydride/tetraglyme electrolyte for rechargeable magnesium batteries. Journal of Power Sources, 2015. 276: p. 255-261.
92. Wang Fei-fei, G.Y.-s., Yang Jun, Nuli Yan-na, Wang Jiu-lin, Electrochemical characterization of (PhMgCl)2-AlCl3 / mixed ether electrolytes. Journal of ElectroChemistry, 2012. 18(1): p. 56-61.
93. Chang, J., R.T. Haasch, J. Kim, T. Spila, P.V. Braun, A.A. Gewirth, and R.G. Nuzzo, Synergetic Role of Li during Mg Electrodeposition/Dissolution in Borohydride Diglyme Electrolyte Solution: Voltammetric Stripping Behaviors on a Pt Microelectrode Indicative of Mg-Li Alloying and Facilitated Dissolution. ACS Appl Mater Interfaces, 2015.
指導教授 李岱洲、張仍奎(Tai-Chou Lee Jeng-Kuei Chang) 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明