博碩士論文 962403002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.145.163.232
姓名 謝欣成(Hsin-Cheng Hsieh)  查詢紙本館藏   畢業系所 化學學系
論文名稱 光化學評估監測站資料分析與應用
(Photochemical Assessment Monitoring Stations (PAMS) Data Analysis and Applications)
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用
★ VOC前濃縮與預警系統之建構★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用
★ 臭氧前趨物連續監測與臭氧生成之光化學探討★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討
★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析★ 近地表臭氧前驅物分析之前濃縮技術改良
★ 自動化噴霧捕捉分析系統之建立與研究★ 大體積固相微萃取水中揮發性有機污染物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣光化學評估監測站自2002開始建立,到了2006年其運作方式才逐漸成熟,至今共有9個固定測站分佈在台灣西半部。光化學評估監測站網提供了以下的功能:1. 瞭解該區域臭氧前趨物的變化;2. 提供源與受體分析的資料庫;3. 驗證空氣品質模式的排放物種成份比例;4. 解釋高臭氧事件的原因及影響。為了達到上述四項功能,光化學評估監測站的資料必須經過嚴格的品保及品管作為以確保數據的品質。測站經過十年的運作及數據的累積,已經成為高價值的研究資料,可供使用者進行空污或健康之相關研究。本論文將針對下述兩項議題進行更深入的探討:
由於異戊二烯是台灣地區最主要的生物源,而且和氫氧自由基具有相當高的反應性,因此,第三章以異戊二烯作為研究的主題。透過光化學評估監測站萬華站連續兩年的資料分析,發現異戊二烯的濃度變化是由生物源及交通源所共同貢獻的,為了將異戊二烯交通源貢獻分離出來,本論文使用乙烯作為交通排放的指標。研究中發現,嚴熱季節的中午之異戊二烯濃度逐漸攀升,特別是八月份,其最高平均濃度更高達1.6 ppbv,此時交通源的貢獻都被生物源的貢獻所掩蓋,但還是能在濃度峰的斜面上看到交通源的貢獻;而在寒冷季節的中午,則平均濃度降至0.2 ppbv,而且日夜變化和乙烯相似,主要為交通源的貢獻。本研究使用光化學評估監測站的異戊二烯資料,不但驗證了過去利用採樣罐分析的結果,而且其高時間解析的數據,更清楚地顯示由嚴熱季節至寒冷季節,生物源貢獻逐漸減少的變化過程。
本論文第四章利用光化學評估監測站十年來的資料進行趨勢分析,並且與空氣品質測站下降的趨勢結果互相驗證。由於資料數量龐大,不能單純使用多項式擬合的方式來求趨勢,因此採用美國海洋與大氣總署地球系統實驗室全球監測部的曲線擬合法,此方法被用來計算長生命期的二氧化碳濃度趨勢,本論文應用此方法來分析多個測站及多個物種的十年趨勢。首先在台灣北部地區、中部地區、南部地區挑選乙烯、丙烯、苯、甲苯、異戊二烯進行趨勢分析,其中前四個化合物是交通與工業的來源,而異戊二烯主要來自生物源。北部地區的萬華站,其上述的五種化合物均有下降的趨勢,特別是異戊二烯,其降幅更高達95.7%,研判與附近植被變化有密切關係。中部地區台西站,經過趨勢分析之後,發現丙烯和甲苯的降幅達到60%以上,而乙烯和苯有30%的降幅。南部地區的小港站,小港站,其上述的五種化合物均逐有下降的趨勢,其中又以乙烯的降幅達69%最為明顯。研判所觀察到的長期下降趨勢應與交通或工業相關之排放法規逐漸加嚴有密切關係。
摘要(英) The establishment of the network of Photochemical Assessment Monitoring Stations (PAMS) in Taiwan began in 2002, and majority of the stations were set up in 2006. Up to date, there are nine fixed sites across the west side of the island. The functionalities of the PAMS network are as follows: 1. to understand the abundance and variations of major ozone precursors in the regions; 2. to provide the database for source-and-receptor analysis; 3. to validate emission profiles for air-quality models; 4. to facilitate elucidating the cause-and-effect of high ozone episodes. In order to serve these four purposes, the PAMS measurements were subject to a strict protocol of quality control and assurance to safeguard data quality. Afteradecade-long operation, the PAMS data have become an asset for users to explore its true values. Of many possible aspects that could be explored in depth, two were pursued to form the main themes of this thesis.
Isoprene was selected to be the subject of investigation from the PAMS database owing to its mostly biogenic nature, significant emissions on the island, and its extremely high reactivity to hydroxyl radicals. Inter-annual variations of atmospheric isoprene in Taipei were reported based on two years of PAMS data to reveal the detailed interplay between the biogenic and vehicular sources throughout the year. To separate the vehicular contribution from the biogenic one for the ambient isoprene, ethylene was used as an indicator of traffic emissions. While dramatic surge of isoprene was observed at noontime in hot months with the highest average peak mixing ratio of 1.6 ppbv in August, its abundance decreased to 0.2 ppbv on average in cold months. The vehicular contribution to ambient isoprene was largely masked over by the noontime surge of isoprene in hot seasons, but was still able to be vaguely observed on the slopes of the isoprene peaks mimicking the rush-hour features of ethylene. In winter, the diurnal variations of isoprene were very similar to those of ethylene, suggesting the traffic dominance in cold months. This work of isoprene with the use of the PAMS dataset greatly enhances the key findings in previous flask studies. Compared to flask sampling, the highly time-resolved PAMS data was intended to reveal the evolution process from a biogenically overwhelmed condition in hot months to the condition where the biogenic source weakened to reveal the traffic source in cold months.
The decade-long PAMS dataset from 2006 to 2015 allowed trend analysis to respond to the decline observed by the air quality stations. Due to the large size of the dataset, a curve-fitting algorithm adopted by National Oceanic and Atmospheric Administration (NOAA) used for long-lived trace gases such as carbon dioxide was applied to our trend analysis of multi-sites and multi-compounds. With the curve-fitting algorithm the dataset for each target compound was de-seasonized to reveal the decadal trend and residuals. Three sites in the north, central and south regions of Taiwan were selected for trend analysis of ethylene, propylene, benzene, toluene and isoprene. The first four compounds have common sources of vehicles and industries, whereas isoprene is largely biogenic. The Wanhua site in Taipei showed decreased trends for all the aforementioned compounds, with isoprene showing the most dramatic decline of 95.7% over the decade. A significant change in vegetation coverage should be the cause for such a pronounced decline in isoprene. In the central region, the Taixi site showed more than 60% declines for propylene and toluene, and more than 30% for ethylene and benzene. In the south region, the Siaogang site, which is in an urban-industrial hybrid environment, showed an overall decline for all these five compounds with the highest decline of 69% for ethylene. It is speculated that the declines were related to the ever tightening regulations on vehicular and industrial emissions in the past.
關鍵字(中) ★ 光化學評估監測站
★ 揮發性有機化合物
★ 資料分析
★ 異戊二烯
★ 趨勢分析
關鍵字(英) ★ Photochemical Assessment Monitoring Stations (PAMS)
★ Volatile Organic Compounds (VOC)
★ Data analysis
★ Isoprene
★ Trends analysis
論文目次 謝誌 i
著作目錄 v
中文摘要 vii
央文摘要 ix
目錄 xiii
圖目錄 xvii
表目錄 xxi
第一章 緒論 1
1.1 緣起 1
1.2 研究目的 2
1.3 論文架構 3
第二章 光化學評估監測站 5
2.1 大氣化學原理 5
2.2 測站描述 11
2.2.1 測玷儀器介紹 12
2.2.2 測站設置準則 16
2.2.3 測站部署 16
2.3 測站資料 19
2.4 光化學評估監測站的重要性 23
2.4.1 連續資料統計分析 24
2.4.2 提供直接的光化證據 26
2.4.3 排放屬性分析 27
2.4.4 模擬結果驗證 31
2.4.5 模式排放物種成份比例之調整 40
2.5 結論 41
第三章 生物源及交通源異戊二烯特徵研究 43
3.1 前言 43
3.2 研究方法 48
3.2.1 異戊二烯 48
3.2.2 台灣地區植被分布 49
3.2.3 測站環境 50
3.2.4 交通源指標 52
3.3 結果與討論 53
3.3.1 乙烯與異戊二烯資料統計 53
3.3.2 乙烯與異戊二烯散佈圖分析 55
3.3.3 生物源及交通源異戊二烯之特性探討 57
3.3.4 臭氧生成潛勢 59
3.3.5 温度敏感度 64
3.4 結論 66
第四章 長期的趨勢分析 67
4.1 前言 67
4.2 研究方法 72
4.2.1 分析物種 72
4.2.2 趨勢計算方法 73
4.3 結果與討論 81
4.3.1 萬華站趨勢 82
4.3.2 小港站趨勢 86
4.3.3 台西站趨勢 89
4.4 結論 90
第五章 總結與未來展望 95
參考文獻 1. Atkinson, R. Chem. Rev. 1986, 86, 69–201.
2. Atkinson, R.; Arey, J. Chem. Rev. 2003, 103, 4605–4638.
3. Carter, W. P. L.; Pierce, J. A.; Luo, D.; Malkina, I. L. Atmos. Environ. 1995, 29, 2499–2511.
4. Seinfeld, J. H.; Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd Edition; Jhon Wiley & Sons, Inc., 2006.
5. Ryerson, T. B.; Trainer, M.; Holloway, J. S.; Parrish, D. D.; Huey, L. G.; Sueper, D. T.; Frost, G. J.; Donnelly, S. G.; Schauffler, S.; Atlas, E. L.; Kuster, W. C.; Goldan, P. D.; Hubler, G.; Meagher, J. F.; Fehsenfeld, F. C. Science 2001, 292, 719–723.
6. Carter, W. P. L.; Lurmann, F. W. Atmos. Environ. 1991, 25, 2771–2806.
7. Carter, W. P. L.; Atkinson, R. Environ. Sci. Technol. 1989, 23, 864–880.
8. Yang, K.; Ting, C.; Wang, J.; Wingenter, O.; Chan, C. Atmos. Environ.2005, 39, 3221–3230.
9. Chang, C. C.; Ou-Yang, C. F.; Wang, C. H.; Chiang, S. W.; Wang, J. L. Atmos. Environ. 2010, 44, 1301–1307.
10. Wang, C. H.; Chang, C. C.; Wang, J. L. J. Chromatogr. A 2005, 1087, 150–157.
11. Chen, S. P.; Liao, W. C.; Chang, C. C.; Su, Y. C.; Tong, Y. H.; Chang, J. S.; Wang, J. L. Atmos. Environ. 2014, 90, 33–42.
12. Chen, S. P.; Su, Y. C.; Chiu, C. J.; Lin, C. H.; Chang, J. S.; Chang, C. C.; Wang, J. L. Atmos. Environ. 2015, 122, 94–102.
13. Roberts, J. M.; Fehsenfeld, F. C.; Liu, S. C.; Bollinger, M. J.; Hahn, C.; Albritton, D. L.; Sievers, R. E. Atmos. Environ. 1984, 18, 2421–2432.
14. Kleinman, L. I.; Daum, P. H.; Lee, Y. N.; Nunnermacker, L. J.; Springston, S. R.; Weinstein Lloyd, J.; Hyde, P.; Doskey, P.; Rudolph, J.; Fast, J.; Berkowitz, C. J. Geophys. Res. 2003, 108, D3, 4096, doi: 10.1029/2002JD002621.
15. Glaser, K.; Vogt, U.; Baumbach, G.; Volz-Thomas, A.; Geiss, H. J. Geophys. Res. 2003, 108, D4, 8253, doi:10.1029/2002JD002475.
16. Rappenglück, B.; Fabian, P. Atmos. Environ. 1999, 33, 3843–3857.
17. Monod, A.; Sive, B. C.; Avino, P.; Chen, T.; Blake, D. R.; Rowland, F. S. Atmos. Environ. 2001, 35, 135–149.
18. Zaveri, R. A.; Peters, L. K. J. Geophys. Res. 1999, 104, 30387–30415.
19. Carter, W. P. L. Development of the SAPRC-07 chemical mechanism and updated ozone reactivity scales, Report to the California Air Resources Board Contracts No. 03-318; Center for Environmental Re- search and Technology, 2007.
20. Stockwell, W. R.; Middleton, P.; Chang, J. S.; Tang, X. J. Geophys. Res. 1990, 95, 16343–16367.
21. Stockwell, W. R.; Kirchner, F.; Kuhn, M.; Seefeld, S. J. Geophys. Res. 1997, 102, 25847–25879.
22. Chen, S. P.; Liu, T. H.; Chen, T. F.; Ou-Yang, C. F.; Wang, J. L.; Chang, J. S. Environ. Sci. Technol. 2010, 44, 4635–4644.
23. 劉遵賢; 黃賀春; 張艮輝; 張時禹; 鄭福田; 台灣空氣品質模式 Taiwan Air Quality Model(TAQM) 操作使用手冊; 2012.
24. Liu, W. T.; Hsieh, H. C.; Chen, S. P.; Chang, J. S.; Lin, N. H.; Chang, C. C.; Wang, J. L. Atmos. Environ. 2012, 55, 56–63.
25. Dietz, W. A. J. Gas Chromatogr. 1967, 5, 68–71.
26. Chen, S. P.; Liu, W. T.; Ou-Yang, C. F.; Chang, J. S.; Wang, J. L. Atmos. Environ. 2014, 84, 1–8.
27. Chameides, W. L.; Lindsay, R. W.; Richardson, J.; Kiang, C. S. Science 1988, 241, 1473–1475.
28. Atkinson, R. Atmos. Environ. 2000, 34, 2063–2101.
29. Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P. I.; Geron, C. Atmos. Chem. Phys. 2006, 6, 3181–3210.
30. Arneth, A.; Schurgers, G.; Hickler, T.; Miller, P. A. Plant Biol. 2008, 10, 150–162.
31. McLaren, R.; Singleton, D. L.; Lai, J.; Khouw, B.; Singer, E.; WU, Z.; NIKI, H. Atmos. Environ. 1996, 30, 2219–2232.
32. Borbon, A.; Fontaine, H.; Veillerot, M.; Locoge, N.; Galloo, J. C.; Guillermo, R. Atmos. Environ. 2001, 35, 3749–3760.
33. Pacifico, F.; Harrison, S. P.; Jones, C. D.; Sitch, S. Atmos. Environ. 2009, 43, 6121–6135.
34. von Schneidemesser, E.; Monks, P. S.; Gros, V.; Gauduin, J.; Sanchez, O. Geophys. Res. Lett. 2011, 38, L19804, doi:10.1029/2011GL048647.
35. Hellén, H.; Tykkä, T.; Hakola, H. Atmos. Environ. 2012, 59, 59–66.
36. Rasmussen, R. A.; Khalil, M. A. K. J. Geophys. Res. 1988, 93, 1417– 1421.
37. Wang, J. L.; Chew, C.; Chang, C. Y.; Liao, W. C.; Lung, W. N., S. C. C.and Chen; Lee, P. J.; Lin, P. H.; Chang, C. C. Atmos. Environ. 2013, 79, 369–379.
38. Chang, C. C.; Wang, J. L.; Lung, S.; Chang, C. Y. Atmos. Environ. 2014, 99, 298–308.
39. Guenther, A. B.; Zimmerman, P. R.; Harley, P. C.; Monson, R. K.; Fall, R. J. Geophys. Res. 1993, 98, 12609–12617.
40. Shao, M.; Czapiewski, K. V.; Heiden, A. C.; Kobel, K.; Komenda, M.; Koppman, R.; Wildt, J. J. Geophys. Res. 2001, 106, 20483–20491.
41. Sharkey, T. D.; Yeh, S. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 407–436.
42. Calfapietra, C.; Fares, S.; Manes, F.; Morani, A.; Sgrigna, G.; Loreto, F. Environ. Pollut. 2013, 183, 71–80.
43. Chen, X. L.; Zhao, H. M.; Li, P. X.; Yin, Z. Y. Remote Sens. Environ. 2006, 104, 133–146.
44. Wang, J. L.; Chang, C. C.; Lee, K. Z. J. Chromatogr. A 2012, 1248, 161–168.
45. Reimann, S.; Calanca, P.; Hofer, P. Atmos. Environ. 2000, 34, 109–115.
46. Lee, B. S.; Wang, J. L. Atmos. Environ. 2006, 40, 5486–5495.
47. 1999 Protocol to Abate Acidification, Eutrophication and Ground-level Ozone to the Convention on Long-range Transboundary Air Pollution, as amended on 4 May 2012.
48. Burtraw, D.; Szambelan, S. J. U.S. Emissions Trading Markets for SO2 and NOx; Resources For the Future, 2009.
49. Chiang, C. K.; Fan, J. F.; Li, J.; Chang, J. S. J. Geophys. Res. 2009, 114, D24304, doi:10.1029/2008JD011322.
50. Chang, S. C.; Lee, C. T. Environ. Monit. Assess. 2007, 127, 87–96.
51. Parrish, D. D. Atmos. Environ. 2006, 40, 2288–2300.
52. Wang, S.; Hao, J. J. Environ. Sci. (China) 2012, 24, 2–13.
53. Zhang, Q.; Yuan, B.; Shao, M.; Wang, X.; Lu, S.; Lu, K.; Wang, M.; Chen, L.; Chang, C. C.; Liu, S. C. Atmos. Chem. Phys. 2014, 14, 6089– 6101.
54. von Schneidemesser, E.; Monks, P. S.; Plass-Duelmer, C. Atmos. Env- iron. 2010, 44, 5053–5064.
55. Hallquist, M.; et al. Atmos. Chem. Phys. 2009, 9, 5155–5236.
56. Waked, A.; Sauvage, S.; Borbon, A.; Gauduin, J.; Pallares, C.; Vagnot, M. P.; Léonardis, T.; Locoge, N. Atmos. Environ. 2016, 141, 263–275.
57. Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical Recipes in C: The Art of Scientific Computing (1st ed.); Cam- bridge University Press, 1988.
58. Koopmans, L. H.; Birnbaum, Z. W.; Lukacs, E. The Spectral Analysis of Time Series; Academic Press, 1974.
指導教授 王家麟(Jia-Lin Wang) 審核日期 2016-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明