博碩士論文 101230005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.21.246.44
姓名 郭子維(Kuo Tzu-Wei)  查詢紙本館藏   畢業系所 生物物理研究所
論文名稱
(Millipede Locomotion)
相關論文
★ 庫倫作用粒子之動力學★ 帶電粒子在離子流中之交互作用
★ 肥皂膜上的能量耗散★ 紙片落下之行為研究
★ 外加場下肥皂膜的能量耗散★ 圓柱體在二維垂直肥皂膜之動力學
★ 螺旋狀物體在剪切流中的運動行為★ 二元高分子薄膜在平行電場下的相分離
★ 纖毛不對稱運動的模擬★ 肥皂膜流場中圓柱體之行為研究
★ 單向偶極子形成的柱狀結構與非均勻電解質的平均場理論★ 彈性懸掛棍在旋轉系統下之行為
★ 膠體球在電解質溶液中的擴散泳★ 細長彈性桿在旋轉下的非線性動力行為與動態穩定性分析
★ Thermophoresis and Diffusiophoresis in Brownian Simulation with Velocity Distribution Function★ 剛體球在不對稱垂直震盪系統中的動力學行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 馬陸是一種生活在潮濕土壤的節肢動物,本實驗使用的馬陸學名為Asiomorpha coarctata,身長約2 公分,一側30 隻腳,共兩側。前進中的馬陸,其腳形成波狀的排列,從尾端朝向吻端傳播,兩側動作相同。本研究目的在了解馬陸的運動及馬陸是如何跨越崎嶇的地形。實驗中,設置一維運動的直線走道,在走道後半段對地面高度做周期性的改變,干擾馬陸走路以此觀察分析馬陸如何跨越崎嶇地形。在平地上,馬陸會以規律的方式行走,8 – 9隻腳組成一個周期的波, 5 – 6隻腳抬起,2 – 4 隻腳接觸地面, 且同一隻馬陸在多次實驗中,平地的移動速度幾乎為一個定值。在凹凸地上,高低比與速度比呈現正相關,計算腳接觸地面的數目,發現高低比下降,凹凸地與腳的接觸數目減少,從步頻與步長的數據中,可知在凹凸地上,腳仍維持一定的步頻,但步長因踩空而減少,這是速度下降的主要原因,而身體與地板間距在凹凸地與平地的比值高於速度比,這可能表示馬陸在凹凸地上,接觸地板的腳伸較長。以步態維持不變,速度大小與腳的接觸數目成正比為假設做計算,在速度比上面,實驗結果高於計算結果,透過計算了解,速度的震盪是受步態與凹凸地的設定所影響。
摘要(英) Millipedes are arthropods belonging to the class Diplopoda characterized by havingtwo pairs of jointed legs on most body segments. In our experiment, we use Asiomorpha coarctata which is a species of millipedes consists of 15 segments, 60legs, and the body length is about 2 cm as our experimental animal. We try to reveal locomotion of the millipede and how the millipede walks over the rough terrain. In our experiment, we set the one-dimensional road which last half is periodic height variation of the substrate. on the smooth part of substrate, the millipede walk regularly with 8 - 9 legs performing one cycle of metachronal wave, 5 - 6 legs on swing and 2 – 4 legs on stance, and the moving velocities are nearly constant in repeating experiment. Varying the high-low ratio of periodic height variation of substrate, we get the positive correlation between the ratio of moving velocities of rough to smooth part of substrate and the high-low ratio of the substrates. On the other hand, the number of the legs with ground contact decreases with the decreasing high-low ratio of the substrates. The stride frequency keeps a basic value and the stride length which varies larger is reduced by step off. The ratios of body-substrate gap are higher than the ratios of moving velocity. This implies that the millipede elongates the legs on the rough part of substrates. However, the millipede performs better than our model calculation. Through the calculation, we know that the fluctuations of instantaneous velocity are due to the relation between the gait and the rough part of the substrate.
關鍵字(中) ★ 馬陸
★ 運動
★ 走路
關鍵字(英) ★ millipede
★ locomotion
★ leg-coordination
論文目次 1 Introduction and Background....... ............... 1
2 Apparatus and Experiment ......................... 3
2.1 Preparation of Millipede ....................... 3
2.2 Experimental Set Up ............................ 4
2.3 Experimental Process ........................... 6
2.4 Analysis........................................ 7
2.5 Computer Calculation for Simple Model .......... 14
3 Result ........................................... 15
3.1 Motion Behavior on One Dimensional Road................................................ 15
3.2 Gait ........................................... 17
3.3 Kinematics of the millipede movement ........... 18
3.3.1 Moving on The Smooth Part of The Substrates .. 18
3.3.2 Moving on The Rough Part of The Substrates ... 19
3.4 The High-Low Ratio Effect on Velocity .......... 21
3.5 Two Important Parameters of Velocity - Stride Frequency and Stride length ........................ 26
3.6 The Number of The Legs with Ground Contact and The
Body-substrate Gap ................................. 28
3.7 The Calculation for Simple Model ............... 32
4 Discussion ....................................... 36
4.1 Gait ........................................... 36
4.2 The Moving Velocity ............................ 36
4.3 Millipede Fluctuates when walking on specific rough part of substrate................................... 38
4.4 Moving on The Rough Part of The Substrate with Different High-Low
Ratio .............................................. 40
4.5 Stride frequency and stride length ............. 40
Chapter 5 .......................................... 41
5 Conclusion ....................................... 41
Bibliography ....................................... 43
參考文獻 [1] M. H. Dickinson, C. T. Farley, R. J. Full, M. A. R. Koehl, R. Kram & S. Lehman. How animals move: an integrative view. Science 288, 100-106 (2000).
[2] P. Rosenbaum, A. Wosnitza, A. Büschges & M. Gruhn. Activity patterns and timing of muscle activity in the forward walking and backward walking stick insect Carausius morosus. J. Neurophysiol 104, 1681-1695 (2010).
[3] H. Cruse, T. Kindermann, M. Schumm, J. Dean & J. Schmitz. Walknet—a biologically inspired network to control six-legged walking. Neural Networks 11, 1435–1447 (1998).
[4] C. M. Biancardi, C. G. Fabrica, P. Polero, J. F. Loss & A. E. Minetti. Biomechanics of octopedal locomotion: inematic and kinetic analysis of the spider Grammostola mollicoma. J. Exp. Biol. 214, 3433-3442 (2011).
[5] V. Wahl, S. E. Pfeffer & M. Wittlinger. Walking and running in the desert ant Cataglyphis fortis. J. Comp. Physiol A 201, 645–656 (2015).
[6] U. Bassler & A. Buschges. Patter generation for stick insect walking movements—multisensory control of a locomotor program. Brain Research Rev. 27, 65-88 (1998).
[7] M.Raibert, K. Blankespoor, G. Nelson & R. Playter. BigDog, the rough-terrain quaduped robot. Proceedings of the 17th International Federation of Automation Control April 2008, 10822–10825 (2008).
[8] R. Altendorfer, N. Moore, H. Komsuoglu, M. Buehler, H.B. Brown Jr., D. McMordie, U. Saranli, R. Full, D.E. Koditschek. RHex: A Biologically Inspired Hexapod Runner. Autonomous Robots 11, 207–213, (2001).
[9] K. Jayarama & R. J. Full. Cockroaches traverse crevices, crawl rapidly in confined spaces, and inspire a soft, legged robot. Proceedings of the National Academy of Sciences 113, E950-E957, (2016).
[10] C. Ferrell. A comparison of three insect-inspired locomotion controllers. Robotics and Autonomous Systems 16,135-159 (1995).
[11] U. R¨uckert, S. Joaquin & W. Felix. Advances in autonomous mini robots. Springer, New York, (2012).
[12] M. V. Nicole & J. P. Rospars. How fast do living organisms move:Maximum speeds from bacteria to elephants and whales. Am. J. Phys. 83, 719 (2015).
指導教授 陳培亮(Chen Peilong) 審核日期 2016-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明