參考文獻 |
1. Piron, L., et al., Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach. Journal of Rehabilitation Medicine, 2009. 41(12): p. 1016-1020.
2. Ward, N., et al., Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain, 2003. 126(11): p. 2476-2496.
3. Fugl-Meyer, A.R., et al., The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scandinavian journal of rehabilitation medicine, 1974. 7(1): p. 13-31.
4. Gladstone, D.J., C.J. Danells, and S.E. Black, The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabilitation and neural repair, 2002. 16(3): p. 232-240.
5. Turolla, A., et al., Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. Journal of neuroengineering and rehabilitation, 2013. 10(1): p. 1.
6. Talelli, P., et al., Theta Burst Stimulation in the Rehabilitation of the Upper Limb A Semirandomized, Placebo-Controlled Trial in Chronic Stroke Patients. Neurorehabilitation and neural repair, 2012. 26(8): p. 976-987.
7. Sheorajpanday, R.V., et al., Quantitative EEG in ischemic stroke: Correlation with functional status after 6months. Clinical Neurophysiology, 2011. 122(5): p. 874-883.
8. Murase, N., et al., Influence of interhemispheric interactions on motor function in chronic stroke. Annals of neurology, 2004. 55(3): p. 400-409.
9. Mehrholz, J., et al., Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Stroke, 2009. 40(5): p. e392-e393.
10. Lo, A.C., et al., Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine, 2010. 362(19): p. 1772-1783.
11. Maulden, S.A., et al., Timing of initiation of rehabilitation after stroke. Archives of physical medicine and rehabilitation, 2005. 86(12): p. 34-40.
12. Dobkin, B.H., Rehabilitation after stroke. New England Journal of Medicine, 2005. 352(16): p. 1677-1684.
13. Association, A.O.T., Occupational therapy practice framework: Domain & process. 2002: Amer Occupational Therapy Assn.
14. Bohannon, R.W. and M.B. Smith, Interrater reliability of a modified Ashworth scale of muscle spasticity. Physical therapy, 1987. 67(2): p. 206-207.
15. Burdea, G. and P. Coiffet, Virtual reality technology. Presence: Teleoperators and virtual environments, 2003. 12(6): p. 663-664.
16. da Silva Cameirão, M., et al., Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restorative neurology and neuroscience, 2011. 29(5): p. 287-298.
17. Takeuchi, N. and S.-I. Izumi, Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity. Stroke research and treatment, 2013. 2013.
18. Andrew James, G., et al., Changes in resting state effective connectivity in the motor network following rehabilitation of upper extremity poststroke paresis. Topics in stroke rehabilitation, 2009. 16(4): p. 270-281.
19. Grefkes, C. and N.S. Ward, Cortical Reorganization After Stroke How Much and How Functional? The Neuroscientist, 2013: p. 1073858413491147.
20. Bönstrup, M., et al., Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task. NeuroImage, 2016. 124: p. 498-508.
21. Crone, N.E., et al., Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain, 1998. 121(12): p. 2271-2299.
22. Pineiro, R., et al., Functional MRI Detects Posterior Shifts in Primary Sensorimotor Cortex Activation After Stroke Evidence of Local Adaptive Reorganization? Stroke, 2001. 32(5): p. 1134-1139.
23. Rossini, P., et al., Hand motor cortical area reorganization in stroke: a study with fMRI, MEG and TCS maps. Neuroreport, 1998. 9(9): p. 2141-2146.
24. Delvaux, V., et al., Post-stroke reorganization of hand motor area: a 1-year prospective follow-up with focal transcranial magnetic stimulation. Clinical Neurophysiology, 2003. 114(7): p. 1217-1225.
25. Chollet, F., et al., The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Annals of neurology, 1991. 29(1): p. 63-71.
26. Weiller, C., et al., Functional reorganization of the brain in recovery from striatocapsular infarction in man. Annals of neurology, 1992. 31(5): p. 463-472.
27. Weiller, C., et al., Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Annals of neurology, 1993. 33(2): p. 181-189.
28. Manganotti, P., et al., Motor disinhibition in affected and unaffected hemisphere in the early period of recovery after stroke. Clinical neurophysiology, 2002. 113(6): p. 936-943.
29. Liepert, J., F. Hamzei, and C. Weiller, Motor cortex disinhibition of the unaffected hemisphere after acute stroke. Muscle & nerve, 2000. 23(11): p. 1761-1763.
30. Fridman, E.A., et al., Reorganization of the human ipsilesional premotor cortex after stroke. Brain, 2004. 127(4): p. 747-758.
31. Johansen-Berg, H., et al., The role of ipsilateral premotor cortex in hand movement after stroke. Proceedings of the National Academy of Sciences, 2002. 99(22): p. 14518-14523.
32. Lotze, M., et al., The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. The Journal of neuroscience, 2006. 26(22): p. 6096-6102.
33. Chen, C.-C., et al., Nonlinear coupling in the human motor system. The Journal of Neuroscience, 2010. 30(25): p. 8393-8399.
34. Rose, D. and C. Winstein, The co-ordination of bimanual rapid aiming movements following stroke. Clinical rehabilitation, 2005. 19(4): p. 452-462.
35. Lewis, G.N. and W.D. Byblow, Bimanual coordination dynamics in poststroke hemiparetics. Journal of motor behavior, 2004. 36(2): p. 174-188.
36. Wahl, A.-S. and M.E. Schwab, Finding an optimal rehabilitation paradigm after stroke: enhancing fiber growth and training of the brain at the right moment. Frontiers in human neuroscience, 2014. 8.
37. Grefkes, C., et al., Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Annals of neurology, 2008. 63(2): p. 236-246.
38. Friston, K.J., L. Harrison, and W. Penny, Dynamic causal modelling. Neuroimage, 2003. 19(4): p. 1273-1302.
39. Chen, C., S.J. Kiebel, and K.J. Friston, Dynamic causal modelling of induced responses. NeuroImage, 2008. 41(4): p. 1293-1312.
40. Friston, K.J., Functional and effective connectivity in neuroimaging: a synthesis. Human brain mapping, 1994. 2(1‐2): p. 56-78.
41. Grefkes, C. and G.R. Fink, Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain, 2011: p. awr033.
42. Stephan, K.E., On the role of general system theory for functional neuroimaging. Journal of Anatomy, 2004. 205(6): p. 443-470.
43. Wang, L., et al., Dynamic functional reorganization of the motor execution network after stroke. Brain, 2010. 133(4): p. 1224-1238.
44. Penny, W.D., et al., Modelling functional integration: a comparison of structural equation and dynamic causal models. Neuroimage, 2004. 23: p. S264-S274.
45. Roebroeck, A., E. Formisano, and R. Goebel, The identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. Neuroimage, 2011. 58(2): p. 296-302.
46. Sharma, N., J.C. Baron, and J.B. Rowe, Motor imagery after stroke: relating outcome to motor network connectivity. Annals of neurology, 2009. 66(5): p. 604-616.
47. Redfern, M.S., et al., Perceptual inhibition is associated with sensory integration in standing postural control among older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 2009. 64(5): p. 569-576.
48. Derdikman, D., et al., Imaging spatiotemporal dynamics of surround inhibition in the barrels somatosensory cortex. The Journal of neuroscience, 2003. 23(8): p. 3100-3105.
49. David, O., J.M. Kilner, and K.J. Friston, Mechanisms of evoked and induced responses in MEG/EEG. Neuroimage, 2006. 31(4): p. 1580-1591.
50. Okun, M. and I. Lampl, Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nature neuroscience, 2008. 11(5): p. 535-537.
51. Wilent, W.B. and D. Contreras, Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. Nature neuroscience, 2005. 8(10): p. 1364-1370.
52. Bruno, R.M. and D.J. Simons, Feedforward mechanisms of excitatory and inhibitory cortical receptive fields. The Journal of neuroscience, 2002. 22(24): p. 10966-10975.
53. Nassauer, K.W. and J.M. Halperin, Dissociation of perceptual and motor inhibition processes through the use of novel computerized conflict tasks. Journal of the International Neuropsychological Society, 2003. 9(01): p. 25-30.
54. Di Pino, G., et al., Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nature Reviews Neurology, 2014. 10(10): p. 597-608.
55. 廖翊涵, 以運動指標預測復健成效暨設計復健方針;Using Kinematic Features to Predict Rehabilitation Outcome and Guide Rehabilitation Strategy. 2016.
56. Wade, D.T., et al., Physiotherapy intervention late after stroke and mobility. Bmj, 1992. 304(6827): p. 609-613.
57. 呂億綸, 運用腦電波研究中風病人的復健成效 與持續情形; Using EEG to evaluate the stroke rehabilitation efficacy: a longitudinal study. 2015.
58. 林宥辰, 基於虛擬實境復健之中風後運動網路功能性重組研究; Cerebral re-organization of motor networks in response to VR based rehabilitation after stroke. 2014.
59. Kwon, J.-S., et al., Effects of virtual reality on upper extremity function and activities of daily living performance in acute stroke: a double-blind randomized clinical trial. NeuroRehabilitation, 2012. 31(4): p. 379-385.
60. Kristeva, R., L. Patino, and W. Omlor, Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output. Neuroimage, 2007. 36(3): p. 785-792.
61. Chakarov, V., et al., Beta-range EEG-EMG coherence with isometric compensation for increasing modulated low-level forces. Journal of neurophysiology, 2009. 102(2): p. 1115-1120. |