博碩士論文 103827008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.137.180.32
姓名 馬韻婷(Yun-Ting Ma)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 研製包覆靛氰綠與阿黴素之標靶氟化奈米乳劑用於乳癌光/化學治療之研究
(Synthesis and Characterization of Her-2-targeted Indocyanine Green-Doxorubicin-Loaded Perfluorocarbon Nanodroplets for Photo-Chemo-Therapy of Breast Cancer Cells)
相關論文
★ 可動態改變外翻力矩的治療退化性膝關節炎輔具★ 聚乙二醇對於擬球藻生長與脂質堆積之影響
★ 製備包覆靛氰綠及阿黴素之聚乳酸甘醇酸-聚乙二醇交聯標靶奈米粒子用於乳癌光/化學治療之研究★ 研究設計全氟碳化物光生物反應器系統用以純化沼氣並藉此提升微藻生物質及生質能源之產量
★ 針對糖尿病足潰瘍設計並製作一種抗菌且能促進傷口癒合的甲殼素複合式水凝膠之研究★ 利用PLGA微球載體結合超聲波駐波場以提高巨噬細胞藥物輸送之效率
★ 以血流動力系統探討血管內皮細胞在尼古丁刺激下對層流剪應力之型態異常與自體凋亡之表現變化★ 以板式流道系統模擬血管內皮細胞於層流剪力影響下受尼古丁刺激產生發炎反應之研究
★ 結合超聲波駐波場與層堆疊自體組裝微球載體建構提高分子傳遞至細胞內效率之方法★ 製備包覆靛氰綠之聚乳酸甘醇酸標靶奈米粒子用於乳癌光熱暨光動治療之研究
★ 建構駐波聲場光生物反應器系統用於提升密閉式微藻養殖效能之研究★ 研製包覆靛氰綠與利福平之聚乳酸-聚甘醇酸奈米粒子應用於介質內細菌感染治療之研究
★ 雙離子矽氧烷共聚物以沉積法對聚二甲基矽氧烷進行生物相容性修飾★ 開發具有抗菌、消炎、供氧及促使細胞生長特性可注射溫感性水凝膠用於慢性傷口癒合之研究
★ 設計開發一多效複合式殼聚醣水凝膠用於慢性傷口修復之研究★ 丙烯酸胜肽用於開發醫療用途生物活性高分子材料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究為結合光與化學治療,製備包覆靛氰綠與阿黴素之標靶氟化奈米乳劑,目的使乳癌病患能夠利用光治療輔助以降低減少化學藥物使用劑量,進而減緩化學治療時伴隨的副作用與不適,同時又不降低治療效果。製備方法上以二次乳化法合成出包覆靛氰綠(Indocyanine Green;ICG)及阿黴素(Doxorubicin)之全氟溴辛烷(Perfluorooctyl bromide;PFOB)奈米乳劑,隨後以聚乙烯亞胺包覆於奈米乳劑外層。之後我們利用正負電相吸原理將人類表皮生長因子2 (Human Epidermal Growth Factor Receptor 2; HER-2)吸附於奈米粒子表面,完成包覆靛氰綠與阿黴素之標靶氟化奈米乳劑(HER-2 Targeted ICG-DOX-Encapsulated PFOB Double Nano-Emulsions;HIDPDNEs)。經過儀器分析奈米乳劑之平均粒徑與表面電位分別為340  4.5 nm和-57  1.15 mV;ICG與DOX的包覆率分別為95%與60%。此外ICG在模擬人體內溫度下,原本24小時降解至剩餘5成,在有了載體的包覆之下剩餘率還有九成,顯示出載體提供高穩定度,抗癌藥物的藥物釋放,在水溶液中都不到5%。本研究除了對粒子的物理/化學性質,包括粒徑、電性、構形、細胞專一性以及藥品包覆/降解/釋放率測試外,另對於產品在光熱與光動能力上進行分析。我們利用激發波長808 nm搭配強度為6 W/cm2的近紅外光雷射照射HIDPDNEs奈米溶液,結果顯示,溶液光熱能力在粒子包含 ≥ 2 M ICG濃度下下經雷射照射90秒即可超過40oC,而在粒子自由基生成能力方面,在相同雷射條件刺激下,可造成> 6倍單態氧表現量的生成。以上結果顯示本奈米粒子對於癌症治療具有高度潛力。另外,在專一性測試中,使用相同濃度奈米粒子測驗兩小時胞吞作用後細胞肚子內ICG 螢光表現量,結果顯示MDA-MB-453 (HER-2+)的螢光表現量為MCF-7 (HER-2-)的2.4 倍,經過四小時胞吞作用後,更有近4倍的差異值,因此我們可確認HIDPDNEs對HER-2+ 細胞的專一性。最後,我們使用激發波長808 nm且強度為6 W/cm2的近紅外光雷射照射只經過4小時內吞作用HIDPDNEs (內含10 M ICG 及 4.68 M DOX)的MDA-MB-453乳癌細胞5分鐘,和單純的光療(ICG + 近紅外雷射光照射)及化療藥物(DOX)作用相比較之下,HIDPDNEs毒殺能力高於化療藥物1.8倍 (P < 0.05),與光療藥物相比較毒殺能力則高出2倍之多(P < 0.05),證明了HIDPDNEs可同時提供光學及化學治療效果使乳癌細胞死亡。本研究結果證明了所設計之複合載體可用於具HER-2受器表現乳癌細胞之治療,並有望在未來發展成為一種高效能標靶治療乳癌的新興材料。
摘要(英) Breast cancer has long been recognized as one of the most lethal gynecological disease for women due to high drug resistance and serious side effects during treatment. To resolve these issues, a multi-functional human epidermal growth factor receptor 2 (HER-2)-targeted Indocyanine green (ICG)-Doxorubicin (DOX)-loaded perfluorocarbon double-nano-emulsion (HIDPDNE) was developed in this study. The size and surface charge of the HIDPDNE are 340  4.5 nm and -57  1.15 mV, respectively. The encapsulation efficiency for ICG and DOX is 95% and 60%, respectively. Under incubation at 37 oC for 24 h, the amount of entrapped ICG enhanced 5 folds as compared to the freely dissolved ICG and > 80 wt% of DOX remained in the particles, showing that the thermal stability of loaded chemicals in the aqueous solution is improved. Through the detection of ICG-induced fluorescence, we found that the uptake efficiency of HIDPDNEs within 4 h in MDA-MB-453 cells (HER-2+) was 4-fold higher than that in MCF7 cells (HER-2-), showing that the HIDPDNEs indeed have targeting specificity for HER2-expressing cells. In terms of the therapeutic functionality of the nano-agent, our data show that upon NIR laser exposure, the temperature of medium containing HIDPDNEs with ≥ 2-M ICG equivalent enabled to reach > 40oC within 90 sec and its amount of singlet oxygen yielded significantly enhanced ≥ 6 folds after 5-min laser treatment. The capacity of HIDPDNEs in cancer cell killing was further verified by using MDA-MB-453 as the model cell that the motality of the cells which were treated by HIDPDNEs with 10 and 4.68 M of ICG and DOX equivalent, respectively, for 4 h and followed by 5-min NIR light illumination significantly enhanced 1.8- (P < 0.05) and 2 folds (P < 0.05) as compared to the group with DOX alone or ICG + laser, respectively. Overall, the HIDPDNEs which enable to provide both chemo and photo therapies exhibit a high potential for use in destruction of breast tumor.
關鍵字(中) ★ 全氟碳化合物
★ 靛氰綠
★ 阿黴素
★ 標靶性
★ 雙層乳劑
★ 乳癌
★ 光-化學治療
關鍵字(英) ★ Perfluorocarbon
★ Indocyanine green
★ Doxorubicin
★ Brest cancer
★ Double emulsion
★ Photo-Chemo therapy
論文目次 摘 要 I
Abstract III
圖 目 錄 X
表 目 錄 XIII
第一章 緒論 1
第二章 研究背景 3
2.1 現今癌症治療方法與研究成果 3
2.2 乳癌治療原理與方法 5
2.2.1乳癌介紹 5
2.2.2乳癌光學診斷 6
2.2.3乳癌治療 7
2.3 研究動機 13
2.4 生物醫藥奈米技術發展 14
2.4.1 製備方法 14
2.4.2 生醫材料特性 15
2.4.3 藥物載體種類 17
2.5 選用材料介紹 19
2.5.1 靛氰綠 (Indocyanine Green;ICG) 19
2.5.2 阿黴素 (Doxorubicin;DOX) 24
2.5.3 全氟碳化合物 (Perfluorocarbons;PFCs) 26
2.5.4 含氟介面活性劑 (Fluorosurfactant) 30
第三章 實驗部分 32
3.1 實驗藥品、儀器設備 32
3.1.1 藥品 32
3.1.2 儀器 33
3.1.3 藥物濃度檢量線 35
3.2 實驗整體流程 36
3.3 DOX-ICG全氟碳標靶奈米雙層乳劑之製備 37
3.3.1 F68尾端修飾羧基團 37
3.3.2製備包覆ICG與DOX之PFOB奈米雙層乳劑 38
3.3.3表面修飾聚乙烯亞胺(Polyethyleneimine;PEI) 40
3.3.4表面修飾人表皮生長因子受體2單株抗體(anti-HER-2-mAb) 41
3.4 DOX-ICG全氟碳標靶奈米雙層乳劑之特性分析 42
3.4.1 粒徑分析 42
3.4.2 表面電位分析 42
3.4.3 包覆率分析 42
3.4.4 包藥率分析 42
3.4.5 熱穩定性分析 43
3.4.6 掃描式電子顯微鏡(SEM)拍攝 43
3.5 測定DOX-ICG全氟碳標靶奈米雙層乳劑產品用於光治療之功能 44
3.5.1產品生成光熱之效能(Hyperthermia Effect) 44
3.5.2產品生成單態氧之效能(Generation of Singlet Oxygen) 44
3.6 細胞培養 45
3.7 DOX-ICG全氟碳標靶奈米雙層乳劑對乳癌細胞的毒性實驗 47
3.8 DOX-ICG全氟碳標靶奈米雙層乳劑對乳癌細胞的專一性實驗 48
3.9 DOX-ICG全氟碳標靶奈米雙層乳劑對乳癌細胞的胞殺實驗 49
3.10 統計分析 50
第四章 結果與討論 51
4.1 修飾F68尾端羧基化的分析 51
4.2 DOX-ICG全氟碳標靶奈米雙層乳劑的基本分析 52
4.3 DOX-ICG全氟碳標靶奈米雙層乳劑產品的型態分析 53
4.4 DOX-ICG全氟碳標靶奈米雙層乳劑於表面接枝抗體的分析 54
4.5 全氟碳標靶奈米雙層乳劑包覆藥物之熱穩定性分析 56
4.6 DOX-ICG全氟碳標靶奈米雙層乳劑之光熱效能分析 58
4.7 DOX-ICG全氟碳標靶奈米雙層乳劑之光動效能分析 60
4.8 DOX-ICG全氟碳標靶奈米雙層乳劑對乳癌細胞的毒性測試 62
4.9 DOX-ICG全氟碳標靶奈米雙層乳劑對乳癌細胞的專一性分析 63
4.10 DOX-ICG全氟碳標靶奈米雙層乳劑對乳癌細胞的毒殺效能分析 65
4.11 結論 68
第五章 未來展望 69
參考文獻 70
參考文獻 1. Henderson, B.W.a.T.J.D., HOW DOES PHOTODYNAMIC THERAPY WORK? . Photochemistry and Photobiology, 1992. 55(1): p. 145-157.
2. 汪徽五, 周., 以奈米微胞做為傳輸化療藥物的設計考量及國際醫藥法規 管理新進展. RegMed, 2015. 53.
3. 黃叔牧. 乳癌的治療. 第17卷第9期:[Available from: http://www.kmuh.org.tw/www/kmcj/data/8702/3533.htm.
4. Matylevitch, N.P., et al., Apoptosis and accidental cell death in cultured human keratinocytes after thermal injury. The American journal of pathology, 1998. 153(2): p. 567-577.
5. Henderson, B.W. and T.J. Dougherty, HOW DOES PHOTODYNAMIC THERAPY WORK? Photochemistry and Photobiology, 1992. 55(1): p. 145-157.
6. Athar, M., et al., A novel mechanism for the generation of superoxide anions in hematoporphyrin derivative-mediated cutaneous photosensitization. Activation of the xanthine oxidase pathway. J Clin Invest, 1989. 83(4): p. 1137-43.
7. Gupta, P.K., Light–Tissue Interactions. Handbook of Photomedicine, 2013: p. 25.
8. Cairnduff, F., et al., Superficial photodynamic therapy with topical 5-aminolaevulinic acid for superficial primary and secondary skin cancer. British journal of cancer, 1994. 69(3): p. 605.
9. Svaasand, L.O., Optical dosimetry for direct and interstitial photoradiation therapy of malignant tumors. Progress in clinical and biological research, 1984. 170: p. 91.
10. Wilson, B.C., W.P. Jeeves, and D.M. Lowe, In vivo and post mortem measurements of the attenuation spectra of light in mammalian tissues. Photochemistry and photobiology, 1985. 42(2): p. 153-162.
11. Firey, P. and M. Rodgers, PHOTO‐PROPERTIES OF A SILICON NAPHTHALOCYANINE: A POTENTIAL PHOTOSENSITIZER FOR PHOTODYNAMIC THERAPY*. Photochemistry and photobiology, 1987. 45(4): p. 535-538.
12. Borland, C., et al., Photophysical studies of bacteriochlorophyll a and bacteriopheophytin a—singlet oxygen generation. Journal of Photochemistry and Photobiology B: Biology, 1987. 1(1): p. 93-101.
13. Castano, A.P., P. Mroz, and M.R. Hamblin, Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer, 2006. 6(7): p. 535-545.
14. Nair, L.S. and C.T. Laurencin, Biodegradable polymers as biomaterials. Progress in Polymer Science, 2007. 32(8-9): p. 762-798.
15. Miwa, M., The principle of ICG fluorescence method. Open Surg Oncol J, 2010. 2: p. 26-28.
16. Desmettre, T., J. Devoisselle, and S. Mordon, Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Survey of ophthalmology, 2000. 45(1): p. 15-27.
17. Benson, R. and H. Kues, Fluorescence properties of indocyanine green as related to angiography. Physics in medicine and biology, 1978. 23(1): p. 159.
18. Flower, R.W., Evolution of indocyanine green dye choroidal angiography. Optical Engineering, 1995. 34(3): p. 727-736.
19. Freeman, W.R., et al., Simultaneous indocyanine green and fluorescein angiography using a confocal scanning laser ophthalmoscope. Archives of ophthalmology, 1998. 116(4): p. 455-463.
20. Iijima, T., et al., Cardiac output and circulating blood volume analysis by pulse dye-densitometry. Journal of clinical monitoring, 1997. 13(2): p. 81-89.
21. Nonami, T., et al., Blood loss and ICG clearance as best prognostic markers of post-hepatectomy liver failure. Hepato-gastroenterology, 1998. 46(27): p. 1669-1672.
22. Saxena, V., M. Sadoqi, and J. Shao, Degradation kinetics of indocyanine green in aqueous solution. Journal of pharmaceutical sciences, 2003. 92(10): p. 2090-2097.
23. Yu, J., et al., Synthesis of near-infrared-absorbing nanoparticle-assembled capsules. Chemistry of materials, 2007. 19(6): p. 1277-1284.
24. JM, D., et al., Fluorescence properties of indocyanin green-part 1.: in-vitro study with micelles and liposomes.
25. Sheng, Z., et al., Indocyanine Green Nanoparticles for Theranostic Applications. Nano-Micro Letters, 2013. 5(3): p. 145-150.
26. Zhou, J.F., M.P. Chin, and S.A. Schafer. Aggregation and degradation of indocyanine green. in OE/LASE′94. 1994. International Society for Optics and Photonics.
27. Landsman, M., et al., Light-absorbing properties, stability, and spectral stabilization of indocyanine green. Journal of applied physiology, 1976. 40(4): p. 575-583.
28. Mordon, S., et al., Indocyanine green: physicochemical factors affecting its fluorescencein vivo. Microvascular research, 1998. 55(2): p. 146-152.
29. van den Biesen, P.R., et al., Yield of fluorescence from indocyanine green in plasma and flowing blood. Annals of biomedical engineering, 1995. 23(4): p. 475-481.
30. 湯松陵, 李., 曾中龍, 葉明功, 台灣民眾對家庭廢舊藥品之認知、行為與態度. THE JOURNAL OF TAIWAN PHARMACY 2012. 28(2).
31. Kim, D.W., et al., siRNA-based targeting of antiapoptotic genes can reverse chemoresistance in P-glycoprotein expressing chondrosarcoma cells. Mol Cancer, 2009. 8: p. 28.
32. KC, L., Perfluorochemical respiratory gas carriers: benefits to cell culture systems. Journal of Fluorine Chemistry, 2002. 118: p. 19-26.
33. KC., L., Engineering blood: synthetic substitutes from fluorinated compound. Tissue Eng, 2003(9): p. 389-399.
34. Cabrales, P. and J.C. Briceño, Delaying blood transfusion in experimental acute anemia with a perfluorocarbon emulsion. The Journal of the American Society of Anesthesiologists, 2011. 114(4): p. 901-911.
35. Fraker, C.A., et al., Optimization of perfluoro nano-scale emulsions: The importance of particle size for enhanced oxygen transfer in biomedical applications. Colloids and Surfaces B: Biointerfaces, 2012. 98: p. 26-35.
36. Spiess, B.D., Perfluorocarbon emulsions as a promising technology: a review of tissue and vascular gas dynamics. Journal of Applied Physiology, 2009. 106(4): p. 1444-1452.
37. Díaz-López, R., N. Tsapis, and E. Fattal, Liquid perfluorocarbons as contrast agents for ultrasonography and 19F-MRI. Pharmaceutical research, 2010. 27(1): p. 1-16.
38. Kornmann, L.M., et al., Critical appraisal of targeted ultrasound contrast agents for molecular imaging in large arteries. Ultrasound in medicine & biology, 2010. 36(2): p. 181-191.
39. Fabiilli, M.L., et al., Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions. Pharmaceutical research, 2010. 27(12): p. 2753-2765.
40. Rapoport, N., et al., Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. Journal of Controlled Release, 2011. 153(1): p. 4-15.
41. Shiraishi, K., et al., A facile preparation method of a PFC-containing nano-sized emulsion for theranostics of solid tumors. International journal of pharmaceutics, 2011. 421(2): p. 379-387.
42. Moolman, F., et al., Optimization of perfluorocarbon emulsion properties for enhancing oxygen mass transfer in a bio-artificial liver support system. Biochemical engineering journal, 2004. 19(3): p. 237-250.
43. Khattak, S.F., et al., Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. Biotechnology and bioengineering, 2007. 96(1): p. 156-166.
44. Maillard, E., et al., Perfluorocarbon emulsions prevent hypoxia of pancreatic β-cells. Cell transplantation, 2012. 21(4): p. 657-669.
45. McMILLAN, J.D. and D.I. Wang, Enhanced Oxygen Transfer Using Oil‐in‐Water Dispersionsa. Annals of the New York Academy of Sciences, 1987. 506(1): p. 569-582.
46. Ju, L.K., J.F. Lee, and W.B. Armiger, Enhancing oxygen transfer in bioreactors by perfluorocarbon emulsions. Biotechnology Progress, 1991. 7(4): p. 323-329.
47. Astafyeva, K., et al., Perfluorocarbon nanodroplets stabilized by fluorinated surfactants: characterization and potentiality as theranostic agents. Journal of Materials Chemistry B, 2015. 3(14): p. 2892-2907.
48. Deschamps, J., M.F. Costa Gomes, and A.A.H. Pádua, Solubility of oxygen, carbon dioxide and water in semifluorinated alkanes and in perfluorooctylbromide by molecular simulation. Journal of Fluorine Chemistry, 2004. 125(3): p. 409-413.
49. Gajendiran, M., et al., Gold nanoparticle conjugated PLGA–PEG–SA–PEG–PLGA multiblock copolymer nanoparticles: synthesis, characterization, in vivo release of rifampicin. Journal of Materials Chemistry B, 2014. 2(4): p. 418-427.
50. Schmolka, I.R., Poloxamers in the Pharmaceutical Industry. CRC Press Boca Ratin FL, 1991.
51. E. V. Batrakova, S.L., A. M. Brynskikh, A. K. Sharma, Y. Li, M. Boska, N. Gong, R. L. Mosley, V. Y. Alakhov, H. E. Gendelman and A. V. Kabanov, J. , Controlled Release. PubMed 2010. 143: p. 290-301.
52. Chang-Zheng Sun, C.-T.L., Ying-Zheng Zhao, Ping Guo, Ji-Lai Tian, Lu Zhang, Xiao-Kun Li, Hai-Feng Lv, Dan-Dan Dai and a.X. Li, Characterization of the Doxorubicin-Pluronic F68 Conjugate Micelles and Their Effect on Doxorubicin Resistant Human Erythroleukemic Cancer Cells. Journal of Nanomedicine & Nanotechnology, 2011.
53. Li, P. and N. Zhang, Layer-by-layer self-assembly vectors for gene delivery. Current gene therapy, 2011. 11(1): p. 58-73.
指導教授 李宇翔(Yu-Hsiang Lee) 審核日期 2016-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明