參考文獻 |
1. 林詩婉。沼氣中二氧化碳與甲烷氣體之最佳分離吸附濟探討。國立交通學工學院。2011。
2. 謝誌鴻。微藻培養與微藻油脂生產之研究。國立成功大學化學工程學系。1999。
3. Y. H. Lee, Y. L. Yeh, Reduction of oxygen inhibition effect for microalgal growth using fluoroalkylated methoxy polyethylene glycol-stabilized perfluorocarbon nano-oxygen carriers. Process Biochemistry, Vol. 50, p 1119–1127, 2015.
4. 葉昱伶。聚乙二醇對於擬球藻生長與脂質堆積之影響。國立中央大學生物醫學工程研究所。2013。
5. 三加一能量科技股份有限公司‐拯救地球~氣候變遷,比二氧化碳威力更強的溫室氣體http://www.theage.com.au/opinion/the‐missing‐link‐in‐the‐garnaut‐report‐20080709‐3cjh.html?page=‐1http://en.wikipedia.org/wiki/Methane
6. I. J. Simpson, F. S. Rowland, S. Meinardi, and D. R. Blake, Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane. Geophysical Research Letters, Vol. 33, p 22808, 2006.
7. T. M. Hill, J. P. Kennett, D. L. Valentine, Z. Yang, C. M. Reddy, R. K. Nelson, R. J. Behl, C. Robert, and L. Beaufort, Climatically driven emissions of hydrocarbons from marine sediments during deglaciation. Robert, and L. Beaufort, Vol. 103, p 13570‐13574, 2006.
8. 周孟津、張榕林、葡金印譯,”沼氣實用技術”,化學工業出版社,P:282‐290,2009。
9. C. M. White, B. R. Strazisar, E. J. Granite, J. S. Hoffman, and H. W. Pennline, Separation and capture of CO2 from large stationary sources and sequestration in geological formations – Coalbeds and deep saline aquifers. Journal of the Air & Waste Management Association, Vol. 53, p 645‐715, 2003.
10. IPCC Special Report on Carbon dioxide Capture and Storage, Chapter 3 (CO2 Capture) and Chapter 8 (CCS Cost) http://www.ipcc.ch/activity/srccs/index.htm, 2005.
11. D. Aaron, and C. Tsouris, Separation of CO2 from flue gas: A review. Separation Science and Technology ,Vol.40 , p 321‐348, 2005.
12. C. W. Chang, P. Tontiwachwuthikul, A Decision Support System for Solvent of CO2 Separation Process. Energy Conversion, Vol. 37, p 941‐946, 1996.
13. C. Song, Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, Vol. 115, p 2‐32, 2006.
14. M. L. Gray, Y. Soong, K. J. Champagne, H. Pennline, J. P. Baltrus, and R. W. Stevens jr, Improved immobilized carbon dioxide capture sorbents. Fuel Processing Technology, Vol.86, p 1449‐1455, 2005.
15. 洪瑛鍈、藍啟仁,“物理方法固定二氧化碳的現況” 台電工程月刊,,第629期,pp.76~90,民國90年
16. C. D. Livengood, R. D. Doctor, J. C. Molburg, P. Thimmapuram, and G. F. Berry, The Potential for Control of Carbon Dioxide Emissions from Integrated Gasification/Combined‐Cycle Systems. SciTech Connect, p 19-24, 1994.
17. E. J. Granite, and T. O’Brien, Review of novel methods for carbon dioxide separation from flue and fuel gases. Fuel Processing Technology, Vol. 86, p 1423‐1434, 2005.
18. S. Paul, A. K. Ghoshal, B. Mandal, Theoretical studies on separation of CO2 by single and blended aqueous alkanolamine solvents in flat sheet membrane contactor (FSMC). Chemical Engineering Journal, Vol.144, p 352‐360, 2008.
19. L. Meier, R. Perez, L. Azocar, M. Rivas, D. Jeison. Photosynthetic CO2 uptake by microalgae: An attractive tool for biogas upgrading. Biomass and Bioenergy, Vol. 73, p 102–109, 2015.
20. P. H. Harvey and M. D. Pagel, The comparative method in evolutionary biology. Oxford University Press, UK, 1991.
21. 謝志鴻。微藻培養與微藻油脂生產之研究。國立成功大學化學工程學系。2009。
22. E. W. Becker, Microalgae: biotechnology and microbiology. Cambridge University Press, UK, 1994.
23. Y. Chisti, Biodiesel from microalgae. Biotechnology Advances, Vol. 25, p 294-306, 2007.
24. D. H. Turpin, Effect of inorganic N availability on algal photosynthesis and carbon metabolism. Journal of phycology, Vol. 27, p 14-20, 1991.
25. C. Ratledge, Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie, Vol. 86, p 807-815 2004.
26. A. Converti, A. A. Casazza, E. Y. Ortiz, P. Perego, M. D. Borghi, Effect of temperature and nitrogen concentration on vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, Vol. 48, p 1146-1151, 2009.
27. T. Endo, U. Schreiber, and K. Asada, Suppression of quantun yield of photosystem-Ⅱ by hyperosmotic stress in Chlamydomonas-reinhardtii. Plant and Cell Physiology, Vol. 33, p 1253-1258, 1995.
28. S. M. Renaud, and D. L. Parry, Microalgae for use in tropical aquaculture II: Effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. Journal of Applied Phycology, Vol. 6, p 347-356, 1994.
29. A. S. Cifuentes, M. A. Gonzalez, I. Inostroza, and A. Aguilera, Reappraisal of physiological attributes of nine strains of Dunaliella (Chlorophyceae): Growth and pigment content across a salinity gradient. Journal of Phycology, Vol. 37, p 334-344, 2001.
30. A. R. Rao, C. Dayananda, R. Saeada, T. R. Shamala, and G. A. Ravishanker, Effect of salinity on growth of green alga Botryococcus braunnii and its constituents. Bioresource Technology, Vol. 98, p 560-564, 2007.
31. A. B. Amotz1, T. G. Tornabene1and W. H. Thomas, Chemical profile of selected species of microalgae with emphasis on lipid. Journal of Phycology, Vol. 21, p 72-81, 1985.
32. S. M. Renaud, H. C. Zhou, D. L. Parry, L. V. Thinh, and K. C. Woo, Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp., Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp. (clone T.ISO). Journal of Applied Phycology, Vol. 7, p 595- 602, 1995.
33. S. M. Renaud, L. V. Thinh, G. Lambrinidis and D. L. Parry, Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, Vol. 211, p 195-214, 2002.
34. O. Pulz, Photobioreactors: production system for phototrophic microorganisms. Applied microbiology and biotechnology, Vol. 57, p 287-293, 2001.
35. A. Richmpnd, Handbook of microalgal mass culture. CRC press Boca Raton, FL, Vol. 528, 1986.
36. Z. Zhang, and J. P. Sachs, Hydrogen isotope fractionation in freshwater algae: I. Variations among lipids and species. Organic Geochemistry, Vol. 38, p 582-608, 2007.
37. M. J. Sonnekus, Effects of Salinity on the Growth and Lipid Production of Ten Species of Microalgae from the Swartkops Saltworks: A Biodiesel Perspective. Nelson Mandela Metropolitan University, 2010.
38. F. Camacho Rubio, F. G. Acién Fernández, J. A. Sánchez Pérez, F. García Camacho, E. Molina Grima, Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering, Vol. 62, p 71-86, 1999.
39. A. S. Mirón, A. C. Gómez, F. G. Camacho, E. M. Grima, Y.Chisti, Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. Journal of Biotechnology, Vol. 70, p 249-270, 1999.
40. J. C. Weissman, R. P. Goebel, J. R. Benemann, Photobioreactor design : mixing , carbon utilization, and oxygen accumulation. Biotechnology and Bioengineering, Vol. 31, p 336-344, 1988.
41. J. L. Mouget, A. Dakhama, M. C. Lavoie, J. de la Noüe, Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved. FEMS Microbiology Ecology, Vol. 18, p 35-43, 1995.
42. M. Tredici, et al., Novel photobioreactors for the mass cultivation of Spirulina spp. Bulletin de I’Institut océanographique, p 89-96, 1993
43. Richmond, A. and E. Becker, Technological aspects of mass cultivation- a general outline. CRC handbook of microalgal mass culture, p 245-63, 1986.
44. S. Aiba, Growth kinetics of photosynthetic microorganisms. Microbial reactions, Vol. 23, p 85-156, 1982.
45. P. Behrens, Photobioreactors and fermentors: the light and dark sides of growing algae. Algal culturing techniques, P 189-204, 2005
46. A. P. Carvalho, L. A. Meireles, F. X. Malcata, Microalgal reactors: a review of enclosed system designs and performances. Biotechnology progress, Vol. 22, p 1490-506, 2006
47. M. J. Barbosa, R. H. Wijffels, Overcoming shear stress of microalgae cultures in sparged photobioreactors. Biotechnology and bioengineering,Vol.85, p 78-85, 2004
48. F. G. Camacho, A. C. Gomez, T. M. Sobczuk, E. M. Grima, Effects of mechanical and hydrodynamic stress in agitated, sparged cultures of Porphyridium cruentum. Process Biochemistry, Vol. 35, p 1045-50, 2000.
49. M. J. Barbosa, M. Albrecht, R. H. Wijffels, Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnology and bioengineering, Vol. 83, p 112-120, 2003.
50. S. T. Maxxuca, F. G. Camacho, R. F. Camacho, F. G. Acién Fernández, E. M. Grima, Carbon dioxide uptake efficiency by outdoormicroalgal cultures in tubular air life photobioreacters. Biotechnology and Bioengineering, Vol. 67, p 465-475, 2000.
51. 李柏翰。建構駐波聲場光生物反應器系統用於提升密閉式微藻養殖效能之研究。國立中央大學生物醫學與工程學系。2016。
52. G. L. Rorrer, R. K. Mullikin, Modeling and simulation of a tubular recycle photobioreactor for macroalgal cell suspension cultures. Chemical Engineering Science, Vol. 54, p 3153-3162, 1999.
53. C. Y. Chen, C. H. Liu, Y.C. Lo, J.S. Chang, Perspectives on cultivation strategies and photobioreactor designs for photo-fermentative hydrogen production. Bioresource technology, Vol. 102, p 8484- 8492, 2011.
54. A. P. Carvalho, L.A. Meireles, and F. X. Malcata, Microalgal Reactors: A Review of Enclosed System Designs and Performances. Biotechnology Progress, Vol. 22, p 1490-1506, 2006.
55. Y. H. Lee, Y. L. Yeh, K. H. Lin, Y. C. Hsu, Using fluorochemical as oxygen carrier to enhance the growth of marine microalga Nannochloropsis oculata. Bioprocess and Biosystems Engineering, Vol. 36, p 1071–1078, 2013.
56. K. C. Lowe, M. R. Davey, J. B. Power,Perfluorochemicals: their applications and benefits to cell culture. Vol. 16, p 272-277, 1998.
57. A. T. King,B. J. Mulligan, and K. C. Lowe, Biotechnology7. P 1037-1042, 1989.
58. K. C. Lowe, Perfluorochemical respiratory gas carriers: benefits to cell culture systems. Journal of Fluorine Chemistry, Vol. 118, p 19-26, 2002.
59. K. C. Lowe, Engineering blood: synthetic substitutes from fluorinated compound. Tissue Engineering , Vol. 9, p 389-399, 2003.
60. L. C. Clark, and F. Gollan, Science 152, p 1755–1756, 1966.
61. C. L. Kenneth, R. D. Michael and J. B. Power. Perfluorochemicals: their applications and benefits to cell culture. Tibtech ,Vol 16, p 272-277, 1998.
62. E. Maillard, M. T. Juszczak, A. Langlois, C. Kleiss, M. Sencier, W. Bietiger, M. Sanchez-Dominguez, M. P. Krafft, P. R. Johnson, M. Pinget, S. Sigrist, Perfluorocarbon emulsions prevent hypoxia of pancreatic β cells. Cell Transplant, Vol. 21, p 657-669, 2012.
63. S. F. Khattak, K. S. Chin, S. R. Bhatia, S. C. Roberts, Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. Biotechnology and Bioengineering Vol. 96, p 156-166, 2007.
64. F. S. Moolmana, H. Rolfesb, S. W. van der Merwec, W. W. Fockea, Optimization of perfluorocarbon emulsion properties for enhancing oxygen mass transfer in a bio-artificial liver support system. Biochemical Engineering Journal, Vol.19, p 237-250, 2004.
65. L. K. Ju, J. F. Lee, W. B. Armiger, Enhancing oxygen transfer in bioreactors by perfluorocarbon emulsions. Biotechnol Progress, Vol. 7, p 323-329, 1991.
66. J. D. Mcmillan, D. I. C. Wang, Enhanced oxygen transfer using oil-in-water dispersions. Biochemical Engineering, Vol. 506, p 569-82, 1987.
67. P. Cabrales, J. C. Briceño, Delaying blood transfusion in experimental acute anemia with a perfluorocarbon emulsion. Anesthesiology, Vol. 114, p 901-911, 2011.
68. C. A. Frakera, A. J. Mendezb, L. Inverardib, C. Ricordia, C. L. Stablera, Optimization of perfluoro nano-scale emulsions: The importance of particle size for enhanced oxygen transfer in biomedical applications. Colloids and Surfaces B: Biointerfaces, Vol. 98C, p 26-35, 2012.
69. B. D. Spiess, Perfluorocarbon emulsions as a promising technology: a review of tissue and vascular gas dynamics. Journal of Applied Physiology, Vol. 106, p 1444-1452, 2009.
70. L. M. Kornmann, K. D. Reesink, R. S. Reneman†, A. P.G. Hoeks, Critical appraisal of targeted ultrasound contrast agents for molecular imaging in large arteries. Ultrasound in Medicine & Biology, Vol. 36, p 181-191, 2010.
71. R. Díaz-López, N. Tsapis, E. Fattal, Liquid perfluorocarbons as contrast agents for ultrasonography and F-MRI. Pharmaceutical Research, Vol. 27, p 1-16, 2010.
72. K. Shiraishia, R. Endoha, H. Furuhataa, M. Nishiharab, R. Suzukic, K. Maruyamac, Y. Odac, J.I. Jod, Y. Tabatad, J. Yamamotoe, M. Yokoyamaa, A facile preparation method of a PFC-containing nano-sized emulsion for theranostics of solid tumors. International Journal of Pharmaceutics, Vol. 421, p 379-387, 2011.
73. N. Rapoporta, K. H. Nama, R. Guptaa, Z. Gaoa, P. Mohana, A. Payneb, N. Toddb, X. Liub, T. Kimb, J. Sheac, C. Scaifec, D. L. Parkerb, E. K. Jeongb, A. M. Kennedyd, Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. Journal of Controlled Release, Vol. 153, p 4-15, 2011.
74. M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, J. B. Fowlkes, Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions. Pharmaceutical Research, Vol. 27, p 2753-2765, 2010.
75. A. Wasanasathian, C. A. Peng, Artif. Cells, Blood Subs. Immob.Biotech, Vol. 29, p 47-55, 2001.
76. K. C. Lowe, Perfluorochemical respiratory gas carriers: benefits to cell culture systems. Journal of Fluorine Chemistry, Vol. 118, p 19-26, 2002.
77. 彭冠傑。我國沼氣回收再利用之環境與經濟效益評估。國立台北大學公共事務學院自然資源與環境管理學院。2012。
78. 陳玫佐。升質沼氣發酵特性之研究。國立中央大學環境工程研究所。2010。 |