博碩士論文 102226045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.139.108.48
姓名 簡仲信(Chien chung-hsin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 基於鈉鉀離子交換波導之光學力推動金奈米球
(Optical Propulsion of Gold Nanoparticles Based on Na+-K+ Ion Exchanged Waveguide)
相關論文
★ 以側磨光纖半塊材耦合器激發微米球型共振腔基模之研究★ 以氬離子雷射對玻璃材料加工之研究
★ 以裸光纖激發球共振腔之共振譜研究★ 錐狀平面波導光柵結構與微米小球共振腔之光耦合效率研究
★ 溶膠凝膠法合成以鉭元素為基礎的全固態電致變色元件★ S型彎曲波導與微米小球共振腔之光耦合效率研究
★ 錐狀光纖與微米球共振腔耦合之研究與應用★ 以鎖模鈦藍寶石飛秒雷射雙光子聚合製作光波導微結構之研究
★ 利用光子晶體的能隙邊緣移動達成全光開關之研究★ 利用繞射圖形檢測錐狀光纖的製造與品質
★ 利用雙光子聚合技術製作高耦合效率波導陣列光纖耦合器★ 光學印刷電路板之製作與特性分析
★ 鈉鉀離子交換波導之製作及其表面消逝波之研究★ 拉伸式長週期光纖光柵的模態色散現象研究
★ 可調式窄頻液晶濾波器★ 基於D形光纖之拉曼感測器模擬與設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用鈉鉀離子交換的技術製作光波導當作光推球基板,並藉由顯微鏡系統研究金奈米粒子受到波導表面消逝場時的運動情形。在理論上模擬金奈米球在波導消逝場上的受力行為,並指出奈米系統下的化學效應對於穩定地捕陷以及推動奈米粒子的重要性。在實驗上我們成功地捕陷並推動二氧化矽微米球超過140微米的距離,然而對於金奈米球而言,雖然其推動和布朗運動相比是明顯的,但是穩定地捕陷以及推動是不成功的。我們將其歸因於波導上方消逝場的侷限性不足,未來使用表面電漿型式的光波導可以大大地改善缺失。
摘要(英) In this study, the propulsion of colloidal gold nanoparticles based on Na+-K+ ion exchange waveguides via the evanescent field was analyzed. Theoretically, the approach to calculate the optical forces exerted on nanoparticles was reviewed. Of particularly interest, we point out the importance where the chemistry of the nanoscale environment should be specially tailored in order to achieve trapping and transport of nanoparticles with high stability. Experimentally, we demonstrate the propulsion of silica micrometer-sized spheres along the optical waveguide over a length of 140μm. On the contrary, although the movement of gold nanoparticles against brownian motion was obvious, stable trapping and transport was not successful. We attribute the result to relatively weak gradient forces which can be further improved utilizing surface plasmon polariton waveguides.
關鍵字(中) ★ 光操控
★ 光推動
★ DLVO理論
★ 布朗運動
★ 消逝場
★ 金奈米粒子
關鍵字(英) ★ Optical manipulation
★ Optical propulsion
★ DLVO theory
★ Brownian motion
★ evanescent field
★ gold nanoparticles
論文目次 中文摘要 I
Abstract II
誌謝 III
目錄 i
圖目錄 iv
表目錄 viii
第一章 緒論 1
1-1 前言 1
1-2 歷史背景 4
1-3 文獻回顧 4
1-4 研究動機 9
1-5 論文架構 11
第二章 研究方法 12
2-1 羅倫茲-杜德模型 12
2-2 米氏理論 18
2-2-1米氏理論簡介 18
2-2-2米氏理論推導 19
2-2-3平面波激發 25
2-2-4消逝波激發 29
2-2-5瑞利理論近似 31
2-2-6極化率表示式 32
2-2-7模擬結果與討論 35
2-3 光學力 38
2-3-1光學力簡介 38
2-3-2羅倫茲力推導 39
2-3-3消逝場的形式 40
2-3-4模擬結果 41
2-4 非光學力 45
2-4-1非光學力簡介 45
2-4-2史托克斯定律 45
2-4-3重力與浮力 48
2-4-4布朗運動 49
2-4-5 DLVO理論 51
2-5波導理論 62
2-5-1波導簡介 62
2-5-2離子交換法 64
2-5-3光束傳播法 71
第三章 實驗設計與架構 72
3-1 波導製作 72
3-2 實驗架構 76
3-3 實驗參數 80
3-4 實驗模擬 87
第四章 實驗結果與討論 91
4-1 實驗原型 91
4-2 改變黏滯係數 100
4-3 二氧化矽微米球 102
第五章 結論與未來展望 104
5-1 結論 104
5-2 未來與展望 105
參考文獻 106
參考文獻 G. J. Puppels, F. F. M. De Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying Single Living Cells and Chromosomes by Confocal Raman Microspectroscopy,” Nature. 347, 301-303 (1990).
N. M. Sijtsema, S. D. Wouters, C. J. De Grauw, C. Otto, and J. Greve, “Confocal Direct Imaging Raman Microscope: Design and Applications in Biology,” Appl. Spectrosc. 52, 348-355 (1998).
T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” Phys. Chem. B. 104, 10549-10556 (2000).
李展進,以奈米球微影術製作表面電漿增強拉曼基板,國立中央大學光電所碩士論文,中華民國一零三年。
S. H. Chang, “Modeling and Design of Ag, Au, and Cu Nanoplasmonic Structures for Enhancing the Absorption of P3HT:PCBM-Based Photovoltaics,” IEEE. Photonic. 5, 4800509 (2013).
P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine,” Phys. Chem. B. 110, 7238-7248 (2006).
P. Olk, Optical Properties of Individual Nano-Sized Gold Particle Pairs (IAPP, TU Dresden, 2008).
E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity,” Small 1, 325-327 (2005).
O. Salata, “Applications of Nanoparticles in Biology and Medicine,” J. Nanobiotechnology 2, 3 (2004)
P. M. Tiwari, K. Vig, V. A. Dennis, and S. R. Singh, “Functionalized Gold Nanoparticles and Their Biomedical Applications,” Nanomaterials 1, 31-63 (2011).
R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological Applications of Gold Nanoparticles,” Chem. Soc. Rev. 37, 1896-1908 (2008).
B. Duncan, C. Kim, and V. M. Rotello, “Gold Nanoparticle Platforms as Drug and Biomacromolecule Delivery Systems,” J. Control. Release. 148, 122-127 (2010).
T. Tencomnao, A. Apijaraskul, V. Rakkhithawatthana, S. Chaleawlert-umpon, N. Pimpa, W. Sajomsang, and N. Saengkrit, “Gold/Cationic Polymer Nano-Scaffolds Mediated Transfection for Non-Viral Gene Delivery System,” Carbohyd. Polym. 84, 216-222 (2011).
A. Sharma, A. Tandon, J. C. K. Tovey, R. Gupta, J. D. Robertson, J. A. Fortune, A. M. Kibanov, J. W. Cowden, F. G. Rieger, and R. R. Mohan, “Polyethylenimine-Conjugated Gold Nanoparticles: Gene Transfer Potential and Low Toxicity in the Cornea,” Nanomed. Nanotechnol. 7, 505-513 (2011).
S. Wang, K. J. Chen, T. H. Wu, H. Wang, W. Y. Lin, M. Ohashi, P. Y. Chiou, and H. R. Tseng, “Photothermal Effects of Supramolecularly Assembled Gold Nanoparticles for the Targeted Treatment of Cancer Cells,” Angew. Chem. Int. Edit. 49, 3777-3781 (2010).
T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J. X. Cheng, and A. Wei, “Hyperthermic Effects of Gold Nanorods on Tumor Cells, ” Nanomedicine (Lond) 2, 125-132 (2007).
Y. C. Cao, R. Jin, J. M. Nam, C. S. Thaxton, and C. A. Mirkin, “Raman Dye-Labeled Nanoparticle Probes for Proteins,” J. Am. Chem. Soc. 125, 14676-14677 (2003).
A. R. Bizzarri, and S. Cannistraro, “SERS Detection of Thrombin by Protein Recognition Using Functionalized Gold Nanoparticles,” Nanomed. Nanotechnol. 3, 306-310 (2007).
G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “7× 7 Reconstruction on Si(111) Resolved in Real Space,” Phys. Rev. Lett. 50, 120-123 (1983)
G. Binning and H. Rohrer, “In Touch With Atoms,” Rev. Mod. Phys. 71, S324-S330 (1999).
G. Binning, H. Rohrer, Ch. Gerber, and E. Wibel, “Surface Studies by Scanning Tunneling Microscopy,” Phys. Rev. Lett. 49, 57 (1982).
J. A. Stroscio, and W. J. Kaiser, Scanning Tunneling Microscopy (Academic Press, New York, 1993).
M. F. Crommie, C. P. Lutz, and D. M. Eigler, “Confinement of Electrons to Quantum Corrals on a Metal Surface,” Science 262, 218-220 (1993).
G. Binning, C. F. Quate, and Ch. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56, 930-933 (1986).
D. M. Schaefer, R. Reifenberger, A. Patil, and R. P. Andres, “Fabrication of Two‐Dimensional Arrays of Nanometer‐Size Clusters with the Atomic Force Microscope,” Appl. Phys. Let. 66, 1012 (1995).
E. Hecht, Optics, 4th ed (Addison Wesley, San Francisco, 2002).
K. Svoboda, and S. M. Block, “Biological Applications of Optical Forces,” Annu. Rev. Bioph. Biom. 23, 247-285 (1994).
S. Stenholm, “The Semiclassical Theory of Laser Cooling,” Rev. Mod. Phys. 58, 699-739 (1986).
A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24, 156 (1970).
A. Ashkin, and J. M. Dziedzic, “Optical Levitation By Radiation Pressure,” App. Phys. Lett. 19, 283 (1971).
A. Ashkin, and J. M. Dziedzic, “Optical Levitation in High Vacuum,” App. Phys. Lett. 28, 333, (1975).
A. Ashkin, and J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38, 1351 (1977).
A. Ashkin and J. M. Dziedzic, “Observation of Optical Resonances of Dielectric Spheres By Light Scattering,” Appl. Optics. 20, 1803-1814 (1981).
A. Ashkin, “Trapping of Atoms by Resonance Radiation Pressure,” Phys. Rev. Lett. 40, 729 (1978).
A. Ashkin, and J. P. Gordon, “Cooling and Trapping of Atoms By Resonance Radiation Pressure,” Opt. Lett. 4, 161-163 (1979).
A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles,” Opt. Lett. 11, 288-290 (1986).
A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and Manipulation of Single Cells Using Infrared Beams,” Nature. 330, 769-771 (1987).
A. Ashkin, and J. M. Dziedzic, “Optical trapping and Manipulation of Viruses and Bacteria,” Science. 235, 1517-1520 (1987).
K. Ajito, “Combined Near-Infrared Raman Microprobe and Laser Trapping System: Application to the Analysis of a Single Organic Microdroplet in Water,” Appl. Spectrosc. 52, 339-342 (1998).
R. Omori, T. Kobayashi, and A. Suzuki, “Observation of a Single-Beam Gradient-Force Optical Trap for Dielectric Particles in Air,” Opt. Lett. 22, 816-818 (1997).
A. Ashkin, “Force of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime,” Biophys. J. 61, 569-582 (1992).
K. Svoboda, and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930-932 (1994).
S. Sato, Y. Harada, and Y. Waseda, “Optical Trapping of Microscopic Metal Particles,” Opt. Lett. 19, 1807-1809 (1994).
H. Furukawa, and I. Yamaguchi, “Optical trapping of Metallic Particles By a Fixed Gaussian Beam,” Opt. Lett. 23, 216-218 (1998).
D. Cojoc, S. Cabrini, E. Ferrari, R. Malureanu, M. B. Danailov,and E. D. Fabrizio, “Dynamic Multiple Optical Trapping by Means of Diffractive Optical Elements,” Microelectron. Eng. 73–74, 927–932 (2004).
V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous Micromanipulation in Multiple Planes Using a Self-Reconstructing Light Beam,” Nature 419, 145-147 (2002).
M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and Manipulation of Three-Dimensional Optically Trapped Structures,” Science 296, 1101–1103 (2002).
S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation Using Silicon Photonic Crystal Resonators,” Nano. Lett. 10, 99−104 (2010).
P. Kang, X. Serey, Y. F. Chen, and D. Erickson, “Angular Orientation of Nanorods Using Nanophotonic Tweezers,” Nano. Lett. 12, 6400–6407 (2012).
Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled Photonic Manipulation of Proteins and Other Nanomaterials,” Nano. Lett. 12, 1633−1637 (2012).
M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-Induced Back-Action Optical Trapping of Dielectric Nanoparticles,” Nat. Phys. 5, 915−919 (2009).
K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and Rotating Nanoparticles Using a Plasmonic Nano-Tweezer With an Integrated Heat Sink,” Nat. Commun. 2, 469 (2011).
S. Y. Lin, E. Schonbrun, and K. Crozier, “Optical Manipulation with Planar Silicon Microring Resonators,” Nano. Lett. 10, 2408−2411 (2010).
P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, "Optical Trapping of Rayleigh Particles Using a Gaussian Standing Wave," Opt. Commun. 151, 273-275 (1998).
R. J. Cook, and R. K. Hill, “An Electromagnetic Mirror for Neutral Atoms,” Opt. Commum. 43, 258-260 (1982).
S. Kawata, and T. Sugiura, “Movement of Micrometer-Sized Particles in the Evanescent Field of a Laser Beam,” Opt. Lett. 17, 772-774 (1992).
S. Kawata, and T. Tani, “Optically Driven Mie Particles in an Evanescent Field Along a Channeled Waveguide,” Opt. Lett. 21, 1768-1770 (1996).
T. Tanaka, and S. Yamamoto, “Optically Induced Propulsion of Small Particles in an Evenescent Field of Higher Propagation Mode in a Multimode, Channeled Waveguide,” Appl. Phys. Lett. 77, 3131 (2000).
L. N. Ng, B. J. Luff, M. N. Zervas, and J. S. Wilkinson, “Propulsion of Gold Nanoparticles on Optical Waveguides,” Opt. Commun. 208, 117-124 (2002).
L. N. Ng, M. N. Zervas, J. S. Wilkinson, and B. J. Luff, “Manipulation of Colloidal Gold Nanoparticles in the Evanescent Field of a Channel Waveguide,” Appl. Phys. Lett. 76, 1993-1995 (2000).
J. P. Hole, J. S. Wilkinson, K. Grujic, and O. G. Hellesø, “Velocity Distribution of Gold Nanoparticles trapped on an Optical Waveguide,” Opt. Express 13, 3896-3901 (2005).
John Patrick Hole, The Control of Gold and Latex Particles on Optical Waveguides, Doctoral Dissertation, University of Southampton (2005).
B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic Trapping and Transport on Solid Core Waveguides Within a Microfluidic Device,” Opt. Express. 15, 14322-14334 (2007).
A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical Manipulation of Nanoparticles and Biomolecules in Sub-Wavelength Slot Waveguides,” Nature 457, 71-75 (2009).
L. Tong, V. D. Miljković, and M. Käll, “Alignment, Rotation, and Spinning of Single Plasmonic Nanoparticles and Nanowires Using Polarization Dependent Optical Forces,” Nano. Lett. 10, 268–273 (2010).
A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Käll, “Laser Trapping of Colloidal Metal Nanoparticles,” ACS. Nano. 9, 3453-3469 (2015).
E. Verpoorte, “Chip Vision-Optics for Microchips,” Lab. Chip. 3, 42N-52N (2003).
K. B. Mogensen, K. Henning, and J. P. Kutter, “Recent Developments in Detection for Microfluidic Systems,” Electrophoresis 25, 3498–3512 (2004).
D. Psaltis, S. R. Quake, and C. Yang, “Developing Optofluidic Technology Through the Fusion of Microfluidics and Optics,” Nature. 442, 381-386 (2006).
O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical Trapping and Manipulation of Nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
M. Ploschner, T. Čižmár, M. Mazilu, A. D. Falco, and K. Dholakia, “Bidirectional Optical Sorting of Gold Nanoparticles,” Nano. Lett. 12, 1923–1927 (2012).
T. N. Buican, M. J. Smyth, H. A. Crissman, G. C. Salzman, C. C. Stewart, and J. C. Martin, “Automated Single-Cell Manipulation and Sorting by Light Trapping,” Appl. Opt. 26, 5311-5316 (1987).
K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J. P. Hole, “Optical Propulsion of Microspheres Along a Channel Waveguide Produced by Cs+ Ion-Exchange in Glass,” Opt. Commun. 239, 227–235 (2004).
M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic Sorting in an Optical Lattice,” Nature. 426, 421–424 (2003).
M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic Sorting of Mammalian Cells by Optical Force Switching,” Nat. Biotechnol. 23, 83–87 (2005).
G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, “Assembly of 3-Dimensional Structures Using Programmable Holographic Optical Tweezers,” Opt. Express 12, 5475–5480 (2004).
F. Svedberg, Z. Li, H. Xu, and M. Käll, “Creating Hot Nanoparticle Pairs for Surface-Enhanced Raman Spectroscopy through Optical Manipulation,” Nano. Lett. 6, 2639–2641 (2006).
P. M. Tiwari, K. Vig, V. A. Dennis, and S. R. Singh, “Functionalized Gold Nanoparticles and Their Biomedical Applications,” Nanomaterials. 1, 31-63 (2011).
Drude and Paul , “Zur Elektronentheorie der metalle,” Annalen der Physik 306, 566 (1900).
P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370-4379 (1972).
M. A. Oral, R. J. Bell, J. R. W. Alexader, L. L. Long, and M. R. Querry, “Optical Properties of Fourteen Metals in the Infrared and Far Infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493-4499 (1985).
A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices,” Appl. Optics 37, 5271-5283 (1998)
D. Barchiesi and T. Grosges, “Fitting the Optical Constants of Gold, Silver, Chromium, Titanium, and Aluminum in the Visible Bandwidth,” J. Nanophotonics 8, 083097 (2014)
C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
J. Y. Walz, “Ray Optics Calculation of the Radiation Forces Exerted on a Dielectric Sphere in an Evanescent Field,” Appl. Optics 38, 5319-5330 (1999).
G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. Lpz. 25, 377-445 (1908).
Christian Mätzler. Matlab Functions for Mie Scattering and Absorption Version 2. In IAP Research Report; University of Bern, 2002.
H. Chew, D. S. Wang, and M. Kerker, “Elastic Scattering of Evanescent of Electromagnetic Waves,” Appl. Optics 18, 2679-2687 (1979).
R. Wannemacher, A. Pack, and M. Quinten, “Resonant Absorption and Scattering in Evanescent Fields,” Appl. Phys. B 68, 225-232 (1999).
M. Quinten, A. Pack, and R. Wannemacher, “Scattering and Extinction of Evanescent Waves by Small Particles,” Appl. Phys. B 68, 87-92 (1999).
P. C. Chaumet and M. Nieto-Vesperinas, “Electromagnetic Force on a Metallic Particle in the Presence of a Dielectric Surface,” Phys. Rev. B 62, 11185–11191 (2000).
V. Yannopapas, “Optical Forces Near a Plasmonic Nanostructure,” Phys. Rev. B 78, 045412 (2008).
M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical Manipulation of Nanoparticles: a Review,” J. Nanophotonics 2, 021875 (2008).
G. K. Batchelor, An Introduction to Fluidic Dynamics (Cambridge University, 1967)
T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt, Foundations of Heat Transfer 6th edition (John wiley & Sons, 2011)
Z. Duan, B. He, and Y. Duan, “Sphere Drag and Heat Transfer,” Nat. Sci. Rep. 5 12304 (2015).
Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, and J. Israelachvili, “The Role of Interparticle and External Forces In Nanoparticle Assembly,” Nat. Mater. 7, 527-538 (2008)
C. Kittel, Elementary Statistical Physics 3rd edition (John wiley and Sons, New York, 1964)
D. S. Lemons and A. Gythiel, “Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)] ,” Am. J. Phys. 65, 1079-1081 (1997).
C. Van Oss, The Properties of Water and Their Role in Colloidal and Biological Systems 1st edition (Academic Press, Netherlands, 2008)
J. N. Israelachvili, Intermolecular and Surface Forces 3rd edition (Academic Press, Lodon, 2011)
H. Ohshima, Theory of Colloid and Interfacial Electric Phenomena 1st edition (Academic Press, Tokyo, 2006)
S.Yu. Shulepov and G. Frens, “Surface Roughness and Particle Size Effect on the Rate of Perikinetic Coagulation: Experimental,” J. Colloid. Interf. Sci. 182, 388-394 (1996).
Y. Gu and D. Liy, “The Zeta-Potential of Glass Surface in Contact with Aqueous Solutions,” J. Colloid. Interf. Sci. 226, 328-339 (2000).
C. R. Pollock and M. Lipson, Integrated Photonics (Kluwer Academic Publishers, Norwell, 2003).
呂宛珊,鈉鉀離子交換波導之製作及其表面消逝波之研究,國立中央大學光電所碩士論文,中華民國一零一年。
G. Lifante, Integrated Photonics: Fundamentals (John wiley and Sons, England, 2003).
Rsoft Incorporated. BeamPROP 6.0 User Guide, 2005
T. Findakly, “Glass Waveguides by Ion Exchange: a Review,” Opt. Eng. 24, 244-250 (1985).
F. Rehouma and K. E. Aiadi, “Glasses for Ion-Exchange Technology,” Int. J. Commun. 1, 148-155 (2008).
G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson, and R. M. Delarue, “Planar Optical Waveguides Formed by Silver-Ion Migration in Glass,” IEEE J. Quantum Elect. QE-13, 192-200 (1977).
J. Albert and G. L. Yip, “Refractive-Index Profiles of Planar Waveguides Made by Ion-Exchange in Glass,” Appl. Optics 24, 3692-3693 (1985).
T. J. Cullen, C. N. Ironside, C. T. Seaton, and G. I. Stegeman, “Semiconductor‐Doped Glass Ion‐Exchanged Waveguides,” Appl. Phys. Lett. 49, 1403 (1986).
J. E. Gortych and D. G. Hall, “Fabrication of Planar Optical Waveguides by K+-Ion Exchange in BK7 and Pyrex Glass,” IEEE J. Quantum Elect. QE-22, 892-895 (1986).
R. V. Ramaswamy and R. Srivastava, “Ion-Exchanged Glass Waveguide: A Review,” J. Lightwave Technol. 6, 984-1002 (1988).
A. Brandenburg, “Stress in Ion-Exchanged Glass Waveguides,” J. Lightwave Technol. LT-4, 1580-1593 (1986).
J. Albert, G. L. Yip, “Stress-Induced Index Change For K+-Na+ Ion Exchange In Glass,” Electron. Lett. 23, 737-738 (1987).
G. L. Yip and J. Albert, “Characterization of Planar Optical Waveguides by K+-Ion Exchange In Glass,” Opt. Lett. 10, 151-153 (1985).
R. G. Walker, C. D. W. Wilkinson, and J. A. H. Wilkinson, “Integrated Optical Waveguiding Structures Made by Silver Ion-Exchange In Glass. 1: The Propagation Characteristics of Stripe Ion-Exchanged Waveguides; A Theoretical and Experimental Investigation,” Appl. Optics 22, 1923-1928 (1983).
M. N. Weiss and R. Srivastava, “Determination of Ion-Exchanged Channel Waveguide Profile Parameters by Mode-Index Measurements,” App. Optics 34, 455-458 (1995).
K. Tsutsumi, H. Hirai, and Y. Yuba, “Characteristics of Swelling of Sodium-Potassium Ion-Exchanged Glass Waveguides,” Electron. Lett. 22, 1299-1230 (1986).
J. A. Fan, K. Bao, J. B. Lassiter, J. Bao, N. J. Halas, P. Nordlander, and F. Capasso, “Near-Normal Incidence Dark-Field Microscopy: Applications to Nanoplasmonic Spectroscopy,” Nano. Lett. 12, 2817-2821 (2012).
B. N. Kim, J. A. Diaz, S. G. Hong, S. H. Lee, and L. P. Lee, “Dark-Field Smartphone Microscope with Nanoscale Resolution For Molecular Diagnostics,” MicroTAS, 2247-2249, October 26-30 (2014).
Nien-Sheng Cheng, “Formula For the Viscosity of a Glycerol-Water Mixture,” Ind. Eng. Chem. Res. 47, 3285-3288 (2008).
S. Duhr and D. Braun, “Two-Dimensional Colloidal Crystals Formed by Thermophoresis and Convection,” Appl. Phys. Lett. 86, 131921 (2005).
M. P. Hughes and H. Morgan, “Dielectrophoretic Trapping of Single Sub-Micrometre Scale Bioparticles,” J. Phys. D: Appl. Phys. 31, 2205-2210 (1998).
指導教授 戴朝義(Tai Chao-yi) 審核日期 2016-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明