博碩士論文 92236015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.140.186.241
姓名 林芬緣(Fen-Yuan Lin)  查詢紙本館藏   畢業系所 光電科學研究所碩士在職專班
論文名稱 一種新穎的方法來顯示細胞內粒線體的動態反應
(Novel Approach in Displaying Dynamic Variation within Living Mitochondria)
相關論文
★ 腦電波傅利葉特徵頻譜之研究★ 光電星雲生物晶片之製作
★ 電場控制器光學應用★ 手機照相鏡頭設計
★ 氣功靜坐法對於人體生理現象影響之研究★ 針刺及止痛在大鼠模型的痛覺量測系統
★ 新光學三角量測系統與應用★ 離軸式光學變焦設計
★ 腦電波量測與應用★ Fresnel lens應用之量測
★ 線型光學式三角量測系統與應用★ 非接觸式電場感應系統
★ 應用田口法開發LED燈具設計★ 巴金森氏症雷射線三角量測系統
★ 以Sol-Gel法製備高濃度TiO2用於染料敏化太陽能電池光電極之特性研究★ 生產線上之影像量測系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) “眼見為憑”在細胞生物學的研究領域上,依然是個真理。目前,縱然有許多數值方法已被開發出來,作為擷取訊息的有利工具,但多數粒線體的相關研究,則仍然仰賴目視觀察。相對地,利用影像 處理來同步顯示活細胞內部訊息萬變的動態反應的方法,截至目前依然附之闕如。
這篇論文報告了如何運用影像處理,來快速、同步地顯示粒線體由於氧化還原、膜電位以及運動性能等等的改變,所誘發的一連串動態反應。不同類型的運用則印證了這個方法的可適性:轉殖roGFP2-mito氧化還原綠螢光蛋白的PC12細胞,搭配全反射螢光顯微鏡;標定了TMRE螢光的PTC細胞,則使用雷射誘發螢光顯微鏡來偵測內膜電位變化的反應等等。
為了將重要訊息(經常是難以清楚地被肉眼所感測與辨識的)從背景雜訊中抽離出來,並且“顯示”粒線體內部的動態變化,一種嶄新的影像處理方法於焉產生;隨之,則運用數值方法來分析並建構不同參數之間的關連性。簡言之,這套方法不僅僅可以全面性偵測動態反應的瞬時變化(小至100 ms) ,同時也在影片中明確顯示出反應所發生的位置,這除了有益於擴展我們的“眼界”,同時也將提升細胞甚或胞器的研究,使之更臻於完善。
摘要(英) “Seeing is believing” is true even in cell biology research. The most of researches treated of mitochondrial problems by visual inspection, whenas several mathematical calculations were developed for contributing detailed knowledge. However, in contrast, a simultaneous imaging method for soon displaying dynamic change was still left unoccupied to present significance in living cells.
This report presents a rapid and simultaneous approach with imaging/displaying dynamic changes in mitochondrial redox and potential as well. A variety of utilizations were applied in the following: Pheochromocytoma (PC12) cells expressed mitochondrial targeted redox-sensitive green fluorescent protein sensor (roGFP2-mito) under total internal reflection fluorescence microscopy (TIRFM), and primary culture of papillary thyroid carcinoma (PTC) stained with mitochondrial membrane potential indicator, tatramethylrhodamine ethyl ester (TMRE) observed by laser induced epi-fluorescence microscopy (epi-FM).
In order to extract important knowledge that may not be clearly visible to the human eye from background and displayed promptly in sub-mitochondrion in the meanwhile, a novel image processing algorithm should be required; likewise numerical analysis in constructing relevance between numerous parameters was processed getting on. As a result, may not only intensity change but happening location displayed instantly in 100 ms could be demonstrated throughout in living cells in sequences. Obviously, it will be useful to advance our research or expend our knowledge in cellular level or below.
關鍵字(中) ★ 粒線體
★ 影像處理
★ 細胞
關鍵字(英) ★ mitochondrion
★ image processing
★ cell
論文目次 List of Figure......................................................................................... vii
List of Table.................................................. ........................................ x
Table of Abbreviation ............................................................................ xi
Chapter 1 Introduction
1-1 Background .................................................................................... 1
1-2 Mitochondrion ………………………........….…...……...…….... 2
1-2-1 Functions and Morphology………………………………... 3
1-2-2 Mitochondrial Membrane Potential …………………….… 5
1-2-3 Redox (Oxidation/Reduction Reaction) …………..……… 6
1-2-4 Basic Principle of Mitochondrial Metabolism ………….… 7
1-3 Fluorescent Probes for Mitochondrial Status
1-3-1 roGFP2-mito: Indictor of Redox ………….……………… 10
1-3-2 TMRE: Measurements of Inner Membrane Potential …… 12
1-4 Equipments
1-4-1 Epi-Fluorescence Microscopy ……………………………14
1-4-2 Total Internal Reflection Fluorescence Microscopy
(TIRFM) ………………………………………….…….. 16
1-5 Cell Culture ...…….......................................................................18
1-6 Experiment Flow Chart .…………….......................................... 19
Chapter 2 Image Processing
2-1 Introduction ………..………….................................................... 21
2-2 Scheme and Steps ………..…………........................................... 22
2-3 Imaging Mitochondrial Redox State in PC12 cells ……..…….... 28
2-4 Imaging Mitochondrial Membrane Potential in PTC cells .…...... 30
vi
Chapter 3 Quantitative Analysis
3-1 Data Functions and Optimal Descriptors ……………….............. 32
3-2 Scheme and Steps ………..…………........................................... 34
Chapter 4 Result
4-1 Mitochondrial Redox in PC12 cells:
Effect of Taxol Treatment on Mitochondria
4-1-1 Importance of Image Processing ……………………….… 37
4-1-2 Knowledge from Quantitative Analysis ………………….. 42
4-2 Mitochondrial Membrane Potential in PTC cells
Effect of Clodronate on Mitochondria……………………………47
Chapter 5 Discussion
5-1 Significance of Functional Displaying and Identification ……… 53
5-2 Potential of Noise Mask ……………….…………………….…. 54
5-3 Dual-Channel Fluorescence for Functional Tracking …………... 54
5-4 Effect of Taxol Treatment on Mitochondrial Organization …….. 55
Chapter 6 Conclusion ………………..................................................... 57
Reference ................................................................................................ 58
Appendix A ……………....…………..................................................... 60
Appendix B ……………....….…........................................................... 66
參考文獻 [1] Gerald Karp, Cell and Molecular Biology: Concept and Experiments, 3ed, John Wiley & Son, Inc., 2004.
[2] Alberts B., et al., Molecular Biology of the Cell, Garland Publishing Inc., New York, 1994.
[3] Pollard T. D., Earnshaw W. C., Cell Biology, Elsevier Science (USA), Inc., 2004.
[4] Mitochondrion from Wikipedia (http://en.wikipedia.org/wiki/Mitochondrion#Mitochondrion_structure)
[5] Periasamy A., Methods in Cellular Imaging, OXFORD UNIVERSITY PRESS, 2001.
[6] Huang, K., Manton K. G., “The role of oxidative damage in mitochondria during aging: A review”, Frontiers in Bioscience, Vol. 9, pp.1100-1117, 2004.
[7] O’Rourke B., Cortassa S. and Aon M. A., Mitochondrial Ion Channels: Gatekeepers of Life and Death, Physiology, Vol. 20, pp. 303-315, 2005.
[8] Linford N. J., Schriner S. E., and Rabinovitch P. S., “Oxidative Damage and Aging: Spotlight on Mitochondria”, Cancer Research, Vol. 66: (5), March 2006.
[9] Hanson G. T., Aggeler R., Oglesbee D., Cannon M., Capaldi R. A., Tsien R. Y., and Remington S. J., “Investigating Mitochondrial Redox Potential with Redox-sensitive Green Fluorescent Protein Indicators”, J. Biol. Chem., Vol. 279, No. 13, pp. 13044–13053, March 2004.
[10] Nicholls D. G. and Ward M. W., “Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts”, TINS, Vol. 23, No. 4, pp. 166-174, 2000
[11] Prasad P. N., Introduction to Biophotonics, A John Wiley & Sons, Inc., 2003.
[12] Nikon: Introduction to Fluorescence Microscopy (http://www.microscopyu.com/articles/fluorescence/fluorescenceintro.html)
[13] 周宏宇, “Study of Light Source Model for Fluorescence Detection in Biochip”, NCU, master degree, 2004.
[14] Olympus: Total Internal Reflection Fluorescence Microscopy (http://www.olympusmicro.com/primer/techniques/fluorescence/tirf/tirfintro.html)
[15] Yang D. M., Huang C. C., Kao L. S., Lin C. C., Chi C. W., Lin H. Y., Tsai D. P., Lee C. H., Chiou A., “An evanescent approach for mitochondrial function assay of living cells”, Nanomedicine, Vol. 1, Issue 4, pp. 286-292, December 2005.
[16] John C. Russ, The Image Processing Handbook, CRC Press LLC, 2002.
[17] Roth P., Looser H., Heiniger K.C., Bühler S., “DETERMINATION OF ABRASIVE PARTICLE VELOCITY USING LASER-INDUCED FLUORESCENCE AND PARTICLE TRACKING METHODS IN ABRASIVE WATER JETS”, WJTA American Waterjet Conference, pp. 21-23, August 2005.
[18] ImageJ Manual Command List (http://rsb.info.nih.gov/ij/docs/menus/).
[19] John L., Biosignal and Biomedical Image Processing MATLAB-Based Applications, Marcel Dekker, Inc., 2004.
[20] Zorov D. B., Kobrinsky E., Juhaszova M. and Sollott S. J., “Examining Intracellular Organelle Function Using Fluorescent Probes: From Animalcules to Quantum Dots”, Circulation Research, 95, pp. 239-252, 2004.
[21] Heiskanen, K.M., “Mitochondrial depolarization accompanies cytochrome c release during apoptosis in PC6 cells”, J. Biol. Chem., 274, pp. 5654–5658, 1999.
[22] Hogan H., “Fluorescence at the Flip of a Molecular Switch”, Biophotonics, pp. 34-36, January 2005.
[23] Mironov S. L., Ivannikov M. V., and Johansson M., “[Ca2+]i Signaling between Mitochondria and EndoplasmicReticulum in Neurons Is Regulated by Microtubules”, J. Biol. Chem., Vol. 280, pp. 715–721, January 2005
[24] Antman, K., Lagakos, S., and Drazen, J, New Engl. J. Med., 344, pp. 762–763, 2001.
指導教授 張榮森、楊德明
(J.S. Chang、D.M. Yang)
審核日期 2007-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明