博碩士論文 102226052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.147.62.19
姓名 陳慶年(Ching-Nien Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以體積布拉格光柵達成固態三波長雷射輸出
(Development of a solid-state three-wavelength laser with volume Bragg gratings)
相關論文
★ 以體積全像布拉格光柵為反射鏡之單縱模波長可調式V型共振腔鈦藍寶石固態雷射研究★ 以體積全像布拉格光柵為反射鏡之外腔式半導體雷射研究
★ 已體積布拉格光柵為可調反射率輸出雷射鏡研究★ 以錐形半導體放大器為增益介質、外腔VBG回饋半導體雷射研究
★ 利用楔形稜鏡與繞射光柵設計非光線追跡薄型太陽能集光器★ 以體積布拉格光柵為共振腔反射鏡之有效腔長研究
★ 穩態紅外線LED封裝熱阻量測★ 以體積布拉格光柵作為雷射共振腔內反射鏡之縱向模態研究
★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究★ 以體積布拉格光柵作為雷射共振腔反射鏡之橫模行為研究
★ 鎖相熱影像檢測法用以檢測材料內部缺陷★ 光聲影像顯微術之研究
★ 光激發額外載子於太陽能電池內空間分佈之二維軸對稱與二維線對稱物理參數模擬★ 基於純量繞射理論以遠場聲場重建光聲影像之研究
★ 基於光聲訊號之三維資訊重建★ 以動態模型分析PQ:PMMA作為體積布拉格光柵之繞射效率研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,成功作出以 Nd:GdVO4 作為固態雷射系統之增益介質(gain medium)的雙波長雷射。此雷射系統所使用的輸出耦合鏡(output coupler)為受溫度控制的體積布拉格光柵(volume Bragg grating)。產生雙波長輸出的方 式為透過調整體積布拉格光柵的溫度使得輸出之雷射能夠對應到不同的受激輻射截面積(emission cross section),進而改變雷射系統之增益(gain)。以此方法,一共作出三部以 Nd:GdVO4 為增益介質而輸出波長相異的雙波長固態雷射。而最後利用在雷射共振腔內加入額外的 Nd:YAG 以及體積布拉格光柵,成功作出了固態三波長雷射。
摘要(英) Solid-state dual-wavelength lasers were constructed using a Nd:GdVO4 as the gain medium. The output couplers used in these laser cavities were temperature controlled volume Bragg gratings. The gain of the laser cavities was adjusted by changing the temperatures of the VBGs. Temperature adjustment mainly results in thermal expansion of the VBGs, and shifts the corresponding diffraction spectrums, which will then alter the corresponding emission cross section of the laser outputs. Through this method, three dual-wavelength lasers utilizing different emission peaks of the Nd:GdVO4 were realized. The third wavelength was achieved through an additional Nd:YAG and VBG inside the laser cavity.
關鍵字(中) ★ 雙波長雷射
★ 多波長雷射
★ 體積布拉格光柵
★ 三波長雷射
關鍵字(英) ★ dual-wavelength
★ multi-wavelength
★ volume bragg grating
★ three-wavelength
論文目次 中文摘要 i
Abstract ii
致謝 iii
Contents iv
List of Figures v
List of Tables ix
Chapter 1 Introduction 1
1-1 Introduction 1
1-2 Motivation 3
Chapter 2 Basic Principles 4
2-1 Volume Bragg Gratings (VBGs) 4
2-2 Dual-wavelength Laser Theory 9
2-3 Spectral Behaviors of the Nd:GdVO4 and Nd:YAG 11
Chapter 3 Preliminary Experiments 13
3-1 Dual Polarization T-Shaped Cavity 13
3-2 PID Temperature Controller 21
Chapter 4 Development of Multi-Wavelength Lasers 23
4-1 Single Gain, Dual VBG (1064 and 1070 VBG) Cavity 23
4-2 Single Gain, Dual VBG (1070 and 1082 VBG) Cavity 39
4-3 Dual Gain, Dual VBG (1052 and 1082 VBG) Cavity 45
4-4 Dual Gain Three-Wavelength Output Cavity 50
Chapter 5 Conclusions 58
5-1 Conclusions 58
5-2 Future Work 59
Appendix I
References VIII
參考文獻 [1] D. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt., vol. 45, no. 3, pp. 451–459, 2006.
[2] S. Hancock, P. Lewis, M. Foster, M. Disney, and J.-P. P. Muller, “Measuring forests with dual wavelength lidar: A simulation study over topography,” Agric. For. Meteorol., vol. 161, pp. 123–133, Aug. 2012.
[3] Y. J. Huang, Y. S. Tzeng, C. Y. Tang, S. Y. Chiang, H. C. Liang, and Y. F. Chen,“Efficient high-power terahertz beating in a dual-wavelength synchronously modelocked laser with dual gain media,” Opt Lett, vol. 39, no. 6, pp. 1477–1480, 2014.
[4] Y.-F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd:YVO 4 laser,” Appl. Phys. B Lasers Opt., vol. 70, no. 4, pp. 475–478, Apr. 2000.
[5] J. L. He, J. Du, J. Sun, S. Liu, Y. X. Fan, H. T. Wang, L. H. Zhang, and Y. Hang, “High efficiency single- and dual-wavelength Nd : GdVO4 lasers pumped by a fiber-coupled diode,” Appl. Phys. B, vol. 79, no. 3, pp. 301–304, Jun. 2004.
[6] Y. Y. Lin, S. Y. Chen, A. C. Chiang, R. Y. Tu, Y. C. Huang, Y. F. Chen, and Y. H. Chen, “Single-longitudinal-mode, tunable dual-wavelength, CW Nd:YVO4 laser,” Opt. Express, vol. 14, no. 12, pp. 5329–5334, 2006.
[7] Z. Wang, H. Liu, J. Wang, Y. Lv, Y. Sang, R. Lan, H. Yu, X. Xu, and Z. Shao, “Passively Q-switched dual wavelength laser output of LD-end-pumped ceramic Nd:YAG laser.,” Opt. Express, vol. 17, no. 14, pp. 12076–12081, 2009.
[8] B. Wu, P. Jiang, D. Yang, T. Chen, J. Kong, and Y. Shen, “Compact dual-wavelength Nd:GdVO_4 laser working at 1063 and 1065 nm,” Opt. Express, vol. 17, no. 8, p. 6004, Mar. 2009.
[9] X. Z. Wang, Z. F. Wang, Y. K. Bu, L. J. Chen, G. X. Cai, and Z. P. Cai, “A 1064- and 1074-nm Dual-Wavelength Nd:YAG Laser Using a Fabry-Perot Band-pass Filter as Output Mirror,” IEEE Photonics J., vol. 6, no. 4, pp. 1–6, Aug. 2014.V
[10] X.-Z. Wang, Z.-F. Wang, Y.-K. Bu, Z. Liu, L.-J. Chen, G.-X. Cai, Z.-P. Cai, and J. M. Dawes, “A 1064 nm, 1085 nm Dual-Wavelength Nd:YVO4 Laser Using Fabry–Perot Filters as Output Couplers,” IEEE Photonics Technol. Lett., vol. 26, no. 19, pp. 1983– 1985, Oct. 2014.
[11] Y. Lü, L. Zhao, P. Zhai, J. Xia, X. Fu, and S. Li, “Simultaneous three-wavelength continuous wave laser at 946nm, 1319nm and 1064nm in Nd:YAG,” Opt. Commun., vol. 286, no. null, pp. 257–260, Jan. 2013.
[12] L. Jaffres, A. Labruyère, V. Couderc, J. Carreaud, A. Maître, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, and C. Sallé, “Gain structuration in dualwavelength Nd:YSAG ceramic lasers.,” Opt. Express, vol. 20, no. 23, pp. 25596–602, Nov. 2012.
[13] Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dualwavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express, vol. 20, no. 5, p. 5644, Feb. 2012.
[14] C. Y. Cho, C. C. Chang, and Y. F. Chen, “Efficient dual-wavelength laser at 946 and 1064 nm with compactly combined Nd:YAG and Nd:YVO 4 crystals,” Laser Phys. Lett., vol. 10, no. 4, p. 45805, 2013.
[15] C. Y. Cho, C. C. Chang, and Y. F. Chen, “Diode-end-pumped solid-state lasers with dual gain media for multi-wavelength emission,” Laser Phys., vol. 25, no. 1, p. 15802, Jan. 2015.
[16] Y. Lü, P. Zhai, J. Xia, X. Fu, and S. Li, “Simultaneous orthogonal polarized dualwavelength continuous-wave laser operation at 1079.5 nm and 1064.5 nm in Nd:YAlO3 and their sum-frequency mixing,” J. Opt. Soc. Am. B, vol. 29, no. 9, pp. 2352–2356, 2012.
[17] G. Shayeganrad, Y. C. Huang, and L. Mashhadi, “Tunable single and multiwavelength continuous-wave c-cut Nd:YVO 4 laser,” Appl. Phys. B Lasers Opt., vol. 108, no. 1, pp. 67–72, 2012.
[18] A. White, I. Elder, and G. Hall, “Single longitudinal mode and dual wavelength CW VBG lasers at 1342nm and 1064nm,” in Proc. SPIE, 2012, vol. 8543, p. 85430A.
[19] G. Shayeganrad and L. Mashhadi, “Dual-wavelength CW diode-end-pumped a-cut Nd:YVO4 laser at 1064.5 and 1085.5 nm,” Appl. Phys. B, vol. 111, no. 2, pp. 189–194, Apr. 2013.
[20] T. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett., vol. 31, no. 2, p. 229, Jan. 2006.
[21] 陳昭介, “Variable reflectivity laser mirror study based on chirped volume Bragg grating,” National Central University, 2009.
[22] T.-Y. Chung, C.-J. Liao, Y.-H. Lien, S. S. Yang, and J.-T. Shy, “Special Laser Wavelength Generation Using a Volume Bragg Grating as Nd:GdVO 4 Laser Mirror, Jpn. J. Appl. Phys., vol. 49, no. 6, p. 62503, 2010.
[23] L. Glebov, “Volume Bragg Gratings in PTR Glass – New Optical Elements for Laser Design,” in Advanced Solid-State Photonics, 2008, p. 5–7, MD1.
[24] L. Glebov, “High brightness laser design based on volume Bragg gratings,” in Proc. SPIE, 2006, vol. 6216, pp. 1–11.
[25] A. Yariv and P. Yeh, Optical waves in crystals : propagation and control of laser radiation. New York: Wiley, 1983.
[26] O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron., vol. 15, no. 2, pp. 344–353, 2009.
[27] T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron., vol. 24, no. 6, pp. 895–912, 1988.
[28] A. E. Siegman, “Lasers,” Mill Valley, Calif.: University Science Books, 1986, p. 1283.
[29] Y. Sato and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE J. Sel. Top. Quantum Electron., vol. 11, no. 3, pp. 613–620, 2005.
[30] J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. I. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B, vol. 71, pp. 469–473, 2000.
[31] F. G. Anderson, P. L. Summers, H. Weidner, P. Hong, and R. E. Peale, “Interpretive crystal-field parameters: Application to Nd3+ in GdVO4 and YVO4,” Phys. Rev. B, vol. 50, no. 20, pp. 14802–14808, Nov. 1994.
[32] W. Koechner, Solid-State Laser Engineering, 6th ed. Springer-Verlag New York, 2006.
[33] Y. Sato and T. Taira, “Temperature dependencies of stimulated emission cross section for Nd-doped solid-state laser materials,” Opt. Mater. Express, vol. 2, no. 8, pp. 514– 522, 2012.
[34] B. Edlén, “The Refractive Index of Air,” Metrologia, vol. 2, no. 2, pp. 71–80, 1966.
[35] “Technical Data BLUE SHEET Martensitic Stainless SteelsType 410, 420, 425 Mod and 440A,” Allegheny Ludlum Corporation, Pittsburgh, PA, Data sheet, 1998.
[36] OMEGA Engineering inc., “Introduction to Resistance Temperature Detectors.” [Online]. Available: http://www.omega.com/prodinfo/rtd.html. [Accessed: 15-Jun- 2016].
[37] OMEGA Engineering inc., “Introduction to Temperature Measurement with thermistors.” [Online]. Available: http://www.omega.com/prodinfo/thermistor.html. [Accessed: 15- Jun-2016].
[38] B. Beauregard, “Arduino PID Autotune Library.” [Online]. Available: http://brettbeauregard.com/blog/2012/01/arduino-pid-autotune-library/. [Accessed: 15- Jun-2016].
[39] W. Spinelli, “AutotunerPID Toolkit.” [Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/4652-autotunerpid-toolkit. [Accessed: 15-Jun-2016].
指導教授 鍾德元(Te-yuan Chung) 審核日期 2016-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明