博碩士論文 104622022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.189.178.37
姓名 莊詠傑(Yung-Chieh Chuang)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 應用自然電位法於土壤與地下水汙染場址的監測研究
(The Application of Self-Potential Method to Investigate a Soil and Groundwater Contaminated Site)
相關論文
★ 利用RTL (Region-Time-Length) 演算法 探討921 集集大地震之前兆現象★ 集集餘震b值與碎形維度分析
★ 應用太空大地測量法探討台南地區之地表變形★ 電容耦合地電阻探測系統應用於地下管線與坑道之研究
★ 以交叉對比分析地震的時空分佈行態★ 利用PI方法研究地震前兆活動
★ 臺灣深部電性構造及其板塊構造意義★ 利用Pattern Informatics研究1999年台灣集集與2008年中國汶川地震之前兆現象
★ 模擬地震前兆行為之數值模型★ 地電法於地下掩埋物調查之研究
★ 利用經驗模態分解法(EMD)探討潮汐效應對地震活動的影響★ 利用LURR方法探討臺灣1994年後大地震之前兆現象
★ 利用遠距沙堆模型探討特徵地震之準週期性★ 台灣天然電磁場觀測研究
★ 一維滑塊模型事件叢集特性分析與復發時間統計★ TCDP井下地震儀之微地震紀錄的特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於土壤與地下水污染物和整治藥劑作用範圍在地下難以界定,因此,本研究嘗試引入地球物理探勘技術中的自然電位法(Self-Potential Method, SP),期能以地下水污染和整治藥劑於土壤中擴散產生的流動電位(Streaming Potential)做為監測的指標。本文在研究場址佈下兩條相互垂直的測線,將原始自然電位觀測數據中的直流地電阻法施測效應、降雨效應從資料預處理中消除,並以中位數和四分位差作為資料篩選以及品質的評估,最後於Matlab©應用與改寫André Revil等人開發的SP2DINV,解釋自然電位法靈敏度和探測範圍,並逆推演算每日的自然電位剖面。首先,為了探討本自然電位監測系統探測實際電流源的分布,以砂箱實驗比較三種電極陣列法於兩種已知電流源分布的探測能力,再討論有無埋藏金屬導體對自然電位的影響,得到表土暨井下陣列法具有較佳的解析能力。並以飽和食鹽水灌注的砂箱實驗,以逆推自然電位剖面探討流動電位的分布,以驗證研究場址的監測結果,得到流體源頭為負電位;入滲前緣為正電位的特徵。在污染場址的監測中,從自然電位日變化剖面劃定兩次不同區域的整治藥劑作用範圍,並以上升的局部電位估算視地下水流速,估算值與區域的流速測定吻合。此外,從每日自然電位剖面的電位特徵與電流分布,可判定近地表的人造構造物、北北東的地下水流方向,以及推測污染物的擴散前緣。並且以一維近似的研究方法,從每小時累計雨量與近地表流動電位估算流電係數,透過經驗公式計算後得到地下水的導電率,計算值與實際測定值相近。最後,透過氣象局的雨量觀測資料以及研究場址現地場勘,探討降雨事件、雷擊事件、直流地電阻法施測、地形以及地表建築物對於自然電位的影響。
摘要(英) In this study, we have proposed the use of time-lapse SP (Self-Potential) monitoring system to investigate remediation reagents injection and rainfall effect at the soil and groundwater contaminated site, located in Yung Kang, Taiwan. We set up two mutually perpendicular survey lines to continuously record the SP data at a sampling rate of 25 Hz. By averaging 1 day hourly SP median data, we calculate the time-lapse SPT (Self-Potential Tomography) with a published code SP2DINV every day, and get the following results. First, in order to prove the SP results at the soil and groundwater contaminated site, we conduct 12 sandbox experiments to compare the detecting ability of 3 SP arrays with 2 known current source, and discuss the influence from buried metal wire. We also carry on a saline injection to demonstrate the pattern of streaming potential. And from the synthetic test, we define the sensitivity of SPTs and demonstrate the ability to detect SP. Second, by analyzing the SPTs variation from 13 to 18 October 2015 and from 23 to 25 November 2015, SP monitoring system successfully monitor the remediation reagents injection and evaluate the Apparent Groundwater Velocity. Third, making use of interpolation scheme, this study filter the rainfall effect out of the raw SP data, then show the SP response to the precipitation, and evaluate the Apparent Groundwater Velocity and Streaming Potential Coupling Coefficient. Forth, by observing the positive and negative electric potential distributions in both N-S and E-W SPTs, we determine that the regional groundwater flow direction is in NNE and infer that the forefront of contamination is at 20m. Furthermore, in the daily SPTs, there are some artificial structures at a depth of circa 10 m.
關鍵字(中) ★ 地電法
★ 自然電位法
★ 土壤與地下水汙染
★ 整治藥劑灌注
★ 視地下水流速
★ 流電係數
關鍵字(英) ★ Geoelectrical Method
★ Self-Potential Method
★ Soil and Groundwater Contamination
★ Remediation Reagents Injection
★ Apparent Groundwater Fow Velocity
★ Streaming Potential Coupling Coefficient
論文目次 中文摘要 I
英文摘要 II
謝誌 III
目錄 V
圖目 VIII
符號表 X
第一章 緒論 01
  1.1研究動機與目的 01
  1.2永康場址區域水文地質概述 01
  1.3自然電位法概述 04
  1.4本文介紹 05
第二章 自然電位法及其原理 15
  2.1 引言 15
  2.2 自然電位基本原理 16
  2.3 流動電位形成機制 17
2.3.1 電雙層 17
2.3.2 流動電位 18
2.3.3 流動電位控制方程式 19
  2.4 自然電位剖面逆推流程 21
第三章 砂箱實驗 25
  3.1 引言 25
  3.2 砂箱實驗自然電位資料處理 25
3.2.1實驗設計與資料處理方法 25
3.2.2自然電位剖面模型建立與參數設定 27
  3.3 砂箱實驗自然電位剖面逆推結果 28
3.3.1 觀測資料描述 28
3.3.2 比較三種電極陣列法於自然電位的解析能力 29
3.3.3 埋藏導體對自然電位分布的影響 29
3.3.4 與鹽水灌注相關之自然電位分析 31
第四章 土壤與地下水污染場址監測 51
  4.1 引言 51
  4.2 污染場址自然電位資料處理 52
4.2.1 儀器配置與資料收集 52
4.2.2 消除直流地電阻法施測訊號 53
4.2.3 消除降雨事件於自然電位的響應 54
4.2.4 自然電位剖面模型建立與參數設定 54
  4.3 污染場址自然電位剖面逆推結果 56
4.3.1 與十月份整治藥劑相關之自然電位分析 56
4.3.2 與十一月份整治藥劑相關之自然電位分析 58
4.3.3 與地下水流和污染前緣相關之自然電位分析 58
4.3.4 與人造構造物相關之自然電位分析 60
第五章 水文係數估算與自然電位訊號探討 77
  5.1 水文係數估算 77
   5.1.1 由降雨效應以及藥劑傳輸估算視地下水流速 77
   5.1.2 由降雨強度與近地表流動電位估算流電係數 78
  5.2 影響自然電位訊號的因素探討 81
   5.2.1 降雨事件於自然電位剖面的響應 81
   5.2.2 雷擊對自然電位的影響 83
    5.2.3 直流地電阻法施測對自然電位的影響 84
第六章 結論與展望 97
  6.1 具體成果 97
  6.2 未來展望 100
參考文獻 103
附錄A 八月份每日自然電位剖面 115
附錄B 九月份每日自然電位剖面 129
附錄C 十月份每日自然電位剖面 143
附錄D 十一月份每日自然電位剖面 159
附錄E 十二月份每日自然電位剖面 173
附錄F 測線I於10月11日至11月9日自然電位日變化剖面 187
附錄G 測線II於10月11日至11月9日自然電位日變化剖面 195
附錄H 測線I於11月21日至12月20日自然電位日變化剖面 203
附錄I 降雨期間每日電荷密度日變化剖面 211
參考文獻 Alegret, S., Alonso, J., Bartrolí, J., and Martínez–Fàbregas, E., Flow injection system for on–line potentiometric monitoring of ammonia in freshwater streams, Analyst, 114(11), 1443–1447, 1989.
Al–Saigh, N.H., Z. S., Mohammed, and M. S. Dahham, Detection of water leakage from dams by self–potential method, Engineering Geology, 37, 115–121, 1994.
Annan, A. P., GPR methods for hydrogeological studies, In Hydrogeophysics, (pp. 185–213). Springer Netherlands, 2005.
Arora, T., Linde, N., Revil, A., and Castermant, J., Non–intrusive characterization of the redox potential of landfill leachate plumes from self–potential data, Journal of Contaminant Hydrology, 92(3), 274–292, 2007.
Atekwana, E. A., and Atekwana, E. A., Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review, Surveys in Geophysics, 31(2), 247–283, 2010.
Baker, S. S., and Cull, J. P., Streaming potential and groundwater contamination, Exploration Geophysics, 35(1), 41–44, 2004.
Bavusi, M., Rizzo, E., and Lapenna, V., Electromagnetic methods to characterize the Savoia di Lucania waste dump (Southern Italy), Environmental Geology, 51(2), 301–308, 2006.
Benson, A. K., Payne, K. L., and Stubben, M. A., Mapping groundwater contamination using dc resistivity and VLF geophysical methods–A case study, Geophysics, 62(1), 80–86, 1997.
Binley, A., and Kemna, A., DC resistivity and induced polarization methods, In Hydrogeophysics, (pp. 129–156). Springer Netherlands, 2005.
Birch, F. S., Imaging the water table by filtering self–potential profiles, Ground Water, 36, 779–782, 1993.
Birch, F. S., Testing Fournier’s method for finding water table from self–potential, Ground Water, 31, 50–56, 1993.
Boleve, A., Janod, F., Revil, A., Lafon, A., and Fry, J. J., Localization and quantification of leakages in dams using time–lapse self–potential measurements associated with salt tracer injection, Journal of Hydrology, 403(3), 242–252, 2011.
Bolève, A., Revil, A., Janod, F., Mattiuzzo, J. L., and Fry, J. J., Preferential fluid flow pathways in embankment dams imaged by self–potential tomography, Near Surface Geophysics, 7(5–6), 447–462, 2009.
Brigham, E. O., Brigham, E. O., Rey Pastor, J., Pastor, R., Apostol, T. M. T. M., Rodríguez and Penney, D. E., The fast Fourier transform and its applications (No. 517.443). Prentice Hall, 1988.
Buselli, G., and Lu, K., Groundwater contamination monitoring with multichannel electrical and electromagnetic methods, Journal of Applied Geophysics, 48(1), 11–23, 2001.
Cassiani, G., Binley, A., Kemna, A., Flores–Orosco, A., Rizzo, E., Bruno, V., Deiana, R., El–Kaliouby, H., Dietrich, P., Zschornack, L., and Leven, C., Integrated geophysical characterization of a hydrocarbon contaminated site, In Near Surface 2010–16th EAGE European Meeting of Environmental and Engineering Geophysics, September 2010.
Castermant, J., Mendonça, C. A., Revil, A., Trolard, F., Bourrié, G., and Linde, N., Redox potential distribution inferred from self‐potential measurements associated with the corrosion of a burden metallic body, Geophysical Prospecting, 56(2), 269–282, 2008.
Chambers, J. E., Wilkinson, P. B., Kuras, O., Ford, J. R., Gunn, D. A., Meldrum, P. I., Pennington, C.V.L., Weller, A.L., Hobbs, P.R.N., and Ogilvy, R. D., Three–dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK, Geomorphology, 125(4), 472–484, 2011.
Cheng, D. K., Field and wave electromagnetics (Vol. 2). New York: Addison–wesley, 1989.
Colangelo, G., Lapenna, V., Perrone, A., Piscitelli, S., and Telesca, L., 2D Self–Potential tomographies for studying groundwater flows in the Varco d′Izzo landslide (Basilicata, southern Italy), Engineering Geology, 88(3), 274–286, 2006.
Comsol, , 2007.
Corwin, R. F., and Hoover, D. B., The self–potential method in geothermal exploration, Geophysics, 44(2), 226–245, 1979.
Cowin, R. F., The self–potential method and its engineering applications: An overview, In 1984 SEG Annual Meeting. Society of Exploration Geophysicists, January 1984.
Delin, G. N., Healy, R. W., Lorenz, D. L., and Nimmo, J. R., Comparison of local–to regional–scale estimates of ground–water recharge in Minnesota, USA, Journal of Hydrology, 334(1), 231–249, 2007.
Doussan, C., Jouniaux, L., and Thony, J. L., Variations of self–potential and unsaturated water flow with time in sandy loam and clay loam soils, Journal of Hydrology, 267(3), 173–185, 2002.
EarthImager©, Instruction Manual for EarthImager 2D Version 2.4.0, Resistivity and IP Inversion Software, Advanced Geosciences, Inc, Copyright 2002–2009.
Everett, M. E., and Meju, M. A., Near–surface controlled–source electromagnetic induction, In Hydrogeophysics, (pp. 157–183). Springer Netherlands, 2005.
Eykholt, G. R., and Daniel, D. E., Impact of system chemistry on electroosmosis in contaminated soil, Journal of Geotechnical Engineering, 120(5), 797–815, 1994.
Fagerlund, F., and Heinson, G., Detecting subsurface groundwater flow in fractured rock using self–potential (SP) methods, Environmental Geology, 43(7), 782–794, 2003.
Fan, C., Wang, G. S., Chen, Y. C., and Ko, C. H., Risk assessment of exposure to volatile organic compounds in groundwater in Taiwan, Science of the total environment, 407(7), 2165–2174, 2009.
Fournier, C., Spontaneous potentials and resistivity surveys applied to hydrogeology in a volcanic area: Case history of the chaîne des Puys (Puy–de–Dôme, France), Geophysical Prospecting, 37, 647–668, 1989.
Freeze, R. A., and Cherry, J. A., Groundwater. Prentice–Hall, 1977.
Gadani, D. H., and Vyas, A. D., Measurement of complex dielectric constant of soils of Gujarat at X–and C–band microwave frequencies, Indian Journal of Radio and Space Physics, 37, 221–229, 2008.
Gallas, J. D. F., Taioli, F., and Malagutti Filho, W., Induced polarization, resistivity, and self–potential: a case history of contamination evaluation due to landfill leakage, Environmental Earth Sciences, 63(2), 251–261, 2011.
Glover, P. W., and Jackson, M. D., Borehole electrokinetics, The Leading Edge, 29(6), 724–728, 2010.
Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., Xanthopoulos, P., Sakkalis, V., and Vanrumste, B., Review on solving the inverse problem in EEG source analysis, Journal of Neuroengineering and Rehabilitation, 5(1), 25, 2008.
Hansen, P. C., Rank–deficient and discrete ill–posed problems: numerical aspects of linear inversion (Vol. 4). Siam, 1998.
Hashimoto, T., and Tanaka Y., A large self–potential anomaly on Unzen volcano, Shimabara peninsula, Kyushu island, Jpan, Geophysical Research Letters, 22, 191–194, 1995.
Healy, R. W., and Cook, P. G., Using groundwater levels to estimate recharge, Hydrogeology Journal, 10(1), 91–109, 2002.
Horton, R. E., The role of infiltration in the hydrologic cycle. Eos, Transactions American Geophysical Union, 14(1), 446–460, 1933.
Ikard, S. J., and Revil, A., Self–potential monitoring of a thermal pulse advecting through a preferential flow path, Journal of Hydrology, 519, 34–49, 2014.
Jacob, C.E., On the flow of water in an artesian aquifer, Eos Transactions of American Geophysical Union 21, 574–586, 1940.
Jain, A., and Kumar, A., An evaluation of artificial neural network technique for the determination of infiltration model parameters. Applied Soft Computing, 6(3), 272–282, 2006.
Jan, C.D., Chen, T.H., Lo, W.C., Effect of rainfall intensity and distribution on groundwater level fluctuations, Journal of Hydrology, 332, 348–360, 2007.
Jardani, A., Dupont, J. P., and Revil, A., Self‐potential signals associated with preferential groundwater flow pathways in sinkholes, Journal of Geophysical Research: Solid Earth, 111(B9), 2006.
Jardani, A., Revil, A., Bolève, A., Dupont, J. P., Barrash, W., and Malama, B, omography of groundwater flow from self–potential (SP) data,Geophysical Research Letters, 34, L24403, 2007.
Jardani, A., Revil, A., Barrash, W., Crespy, A., Rizzo, E., Straface, S., Cardiff, M., Malama, B., Miller, C., and Johnson, T., Reconstruction of the water table from self‐potential data: A Bayesian approach. Groundwater, 47(2), 213–227, 2009.
Jouniaux, L., Bernard, M.L., Zamora, M., Pozzi, J.P., Streaming potential in volcanic rocks from Mount Pele´e, Journal of Geophysical Research, 105 (B4), 8391–8401, 2000.
Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Sdao, F., and Rizzo, E., High–resolution geoelectrical tomographies in the study of Giarrossa landslide (southern Italy), Bulletin of Engineering Geology and the Environment, 62(3), 259–268, 2003.
LeBlanc, D. R., Garabedian, S. P., Hess, K. M., Gelhar, L. W., Quadri, R. D., Stollenwerk, K. G., and Wood, W. W., Large–scale natural gradient tracer test in sand and gravel, Water Resour. Res, 27, 895–910, 1991.
Lee, L.J.E., Lawrence, D.S.L., and Price, M., Analysis of water–level response to rainfall and implications for recharge pathways in the Chalk aquifer, SE England, Journal of Hydrology 330, 604–620, 2006.
Linde, N., and Revil, A., Inverting self‐potential data for redox potentials of contaminant plumes, Geophysical Research Letters, 34(14), 2007.
Marin, S., van der Kamp, G., Pietroniro, A., Davison, B., and Toth, B., Use of geological weighing lysimeters to calibrate a distributed hydrological model for the simulation of land–atmosphere moisture exchange, Journal of Hydrology, 383(3), 179–185, 2010.
Martínez–Pagán, P., Jardani, A., Revil, A., and Haas, A., Self–potential monitoring of a salt plume, Geophysics, 75(4), WA17–WA25, 2010.
Mauritsch, H. J., Seiberl, W., Arndt, R., Römer, A., Schneiderbauer, K., and Sendlhofer, G. P., Geophysical investigations of large landslides in the Carnic Region of southern Austria, Engineering Geology, 56(3), 373–388, 2000.
Menke, W., Geophysical data analysis: discrete inverse theory. Academic press, 2012.
Milsom, J., Field geophysics (Vol. 25). John Wiley and Sons, 2007.
Minsley, B. J., Sogade, J., and Morgan, F. D., Three‐dimensional self‐potential inversion for subsurface DNAPL contaminant detection at the Savannah River Site, South Carolina. Water Resources Research, 43(4), 2007.
Naudet, V., Revil, A., Bottero, J. Y., and Bégassat, P., Relationship between self‐potential (SP) signals and redox conditions in contaminated groundwater, Geophysical Research Letters, 30(21), 2003.
Naudet, V., Lazzari, M., Perrone, A., Loperte, A., Piscitelli, S., and Lapenna, V., Integrated geophysical and geomorphological approach to investigate the snowmelt–triggered landslide of Bosco Piccolo village (Basilicata, southern Italy), Engineering Geology, 98(3), 156–167, 2008.
Naudet, V., Revil, A., Rizzo, E., Bottero, J. Y., and Bégassat, P., Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations, Hydrology and Earth System Sciences Discussions, 8(1), 8–22, 2004.
Nyquist, J. E., and Corry, C. E., Self–potential: The ugly duckling of environmental geophysics, The Leading Edge, 21(5), 446–451, 2002.
Pacheco, F. A. L., and Fallico, C., Hydraulic head response of a confined aquifer influenced by river stage fluctuations and mechanical loading, Journal of Hydrology, 531, 716–727, 2015.
Patella, D., Self–potential global tomography including topographic effects, Geophysical Prospecting, 45, 843–863, 1997b.
Perrier, F., Trique, M., Aupiais, J., Gautam, U., and Shrestha, P., Electric potential variations associated with periodic spring discharge in western Nepal, Comptes Rendus de l′Académie des Sciences–Series IIA–Earth and Planetary Science, 328(2), 73–79, 1999.
Perrier, F., Trique, M., Lorne, B., and Avouac, J. P., Electric potential variations associated with yearly lake level variations, Geophysical Research Letters, 25(11), 1955–1958, 1998.
Ranjbar, H., Hassanzadeh, H., Torabi, M., and Ilaghi, O., Integration and analysis of airborne geophysical data of the Darrehzar area, Kerman Province, Iran, using principal component analysis, Journal of applied geophysics, 48(1), 33–41, 2001.
Revil, A., and Jardani, A., The self–potential method: Theory and applications in environmental geosciences. Cambridge University Press, 2013.
Revil, A., Ehouarne, L., and Thyreault, E., Tomography of self‐potential anomalies of electrochemical nature, Geophysical Research Letters, 28(23), 4363–4366, 2001.
Revil, A., Hermitte, D., Voltz, M., Moussa, R., Lacas, J. G., Bourrié, G., and Trolard, F., Self‐potential signals associated with variations of the hydraulic head during an infiltration experiment, Geophysical Research Letters, 29(7), 10–1, 2002.
Revil, A., Naudet, V., Nouzaret, J., and Pessel, M., Principles of electrography applied to self‐potential electrokinetic sources and hydrogeological applications, Water Resources Research, 39(5), 2003.
Revil, A., Titov, K., Doussan, C., and Lapenna, V., Applications of the self–potential method to hydrological problems. (pp. 255–292). Springer Netherlands, 2006.
Rizzo, E., Suski, B., Revil, A., Straface, S., and Troisi, S., Self‐potential signals associated with pumping tests experiments, Journal of Geophysical Research: Solid Earth, 109(B10), 2004.
Robert, T., Dassargues, A., Brouyère, S., Kaufmann, O., Hallet, V., and Nguyen, F., Assessing the contribution of electrical resistivity tomography (ERT) and self–potential (SP) methods for a water well drilling program in fractured/karstified limestones, Journal of Applied Geophysics, 75(1), 42–53, 2011.
Sankaran, S., Sonkamble, S., Krishnakumar, K., and Mondal, N. C., Integrated approach for demarcating subsurface pollution and saline water intrusion zones in SIPCOT area: a case study from Cuddalore in Southern India, Environmental monitoring and assessment, 184(8), 5121–5138, 2012.
Sauck, W. A., Atekwana, E. A., and Nash, M. S., High conductivities associated with an LNAPL plume imaged by integrated geophysical techniques, Journal of Environmental and Engineering Geophysics, 2, 203–212, 1998.
Saunders, J. H., Jackson, M. D., and Pain, C. C., Fluid flow monitoring in oil fields using downhole measurements of electrokinetic potential, Geophysics, 73(5), E165–E180, 2008.
Sheffer, M. R., and Howie, J. A., A numerical modelling procedure for the study of the streaming potential phenomenon in embankment dams, In Symposium on the Application of Geophysics to Engineering and Environmental Problems, San Antonio (pp. 475–487). January 2003.
Sheffer, M. R., and Howie, J. A., Imaging subsurface seepage conditions through the modeling of streaming potential, In Proceedings of 54 th Canadian Geotechnical Conference, Calgary (pp. 1094–1101). September 2001.
Simpson, F., and Bahr, K., Practical magnetotellurics. Cambridge University Press, 2005.
Slater, L. D., and Lesmes, D., IP interpretation in environmental investigations, Geophysics, 67(1), 77–88, 2002.
Sogade, J. A., Scira–Scappuzzo, F., Vichabian, Y., Shi, W., Rodi, W., Lesmes, D. P., and Morgan, F. D., Induced–polarization detection and mapping of contaminant plumes. Geophysics, 71(3), B75–B84, 2006.
Sophocleous, M., Bardsley, E., and Healey, J., A rainfall loading response recorded at 300 meters depth: Implications for geological weighing lysimeters, Journal of Hydrology, 319(1), 237–244, 2006.
Soueid Ahmed A., Jardani A., Revil A., Dupont J.P., SP2DINV: A 2D forward and inverse code for streaming potential problems, Computers and Geosciences, 59, 9–16, 2013.
Straface, S., Chidichimo, F., Rizzo, E., Riva, M., Barrash, W., Revil, A., Cardiff, M., and Guadagnini, A., Joint inversion of steady–state hydrologic and self–potential data for 3D hydraulic conductivity distribution at the Boise Hydrogeophysical Research Site, Journal of Hydrology, 407(1), 115–128, 2011.
Suski, B., Revil, A., Titov, K., Konosavsky, P., Voltz, M., Dages, C., and Huttel, O., Monitoring of an infiltration experiment using the self‐potential method, Water Resources Research, 42(8), 2006.
Tanaka, Y., Eruption mechanism as inferred from geomagnetic changes with special attention to the 1989–1990 activity of Aso Volcano, Journal of volcanology and geothermal research, 56(3), 319–338, 1993.
Telesca, L., Lovallo, M., Ramirez–Rojas, A., and Angulo–Brown, F., A nonlinear strategy to reveal seismic precursory signatures in earthquake–related self–potential signals. Physica A: Statistical Mechanics and its Applications, 388(10), 2036–2040, 2009.
Thompson, S., Kulessa, B., and Luckman, A., Integrated electrical resistivity tomography (ERT) and self–potential (SP) techniques for assessing hydrological processes within glacial lake moraine dams, Journal of Glaciology, 58(211), 849–858, 2012.
Thony, J. L., Morat, P., Vachaud, G., and Le Mouël, J. L., Field characterization of the relationship between electrical potential gradients and soil water flux, Comptes Rendus de l′Académie des Sciences–Series IIA–Earth and Planetary Science, 325(5), 317–321, 1997.
Trique, M., Perrier, F., Froidefond, T., Avouac, J. P., and Hautot, S., Fluid flow near reservoir lakes inferred from the spatial and temporal analysis of the electric potential, Journal of Geophysical Research: Solid Earth, 107(B10), EPM–5, 2002.
Trique, M., Richon, P., Perrier, F., Avouac, J. P., and Sabroux, J. C., Radon emanation and electric potential variations associated with transient deformation near reservoir lakes, Nature, 399(6732), 137–141, 1999.
Trujillo–Barreto, N. J., Aubert–Vázquez, E., and Valdés–Sosa, P. A., Bayesian model averaging in EEG/MEG imaging, NeuroImage, 21(4), 1300–1319, 2004.
Tzeng, Y. S., and Lee, C. H., Analysis of rail potential and stray currents in a direct–current transit system, Power Delivery, IEEE Transactions on, 25(3), 1516–1525, 2010.
Van der Kamp, G., Maathuis, H., Annual fluctuations of groundwater levels due to loading by surface moisture, Journal of Hydrology 127, 137–152, 1991.
Vinogradov, J., and Jackson, M. D., Multiphase streaming potential in sandstones saturated with gas/brine and oil/brine during drainage and imbibition, Geophysical Research Letters, 38(1), 2011.
Wahba, G., and Wang, Y., Behavior near zero of the distribution of GCV smoothing parameter estimates, Statistics and Probability Letters, 25(2), 105–111, 1995.
Wang, M., and Revil, A., Electrochemical charge of silica surfaces at high ionic strength in narrow channels, Journal of Colloid and Interface Science, 343(1), 381–386, 2010.
Wang, T. P., Chen, C. C., Tong, L. T., Chang, P. Y., Chen, Y. C., Dong, T. H., Liu, H.C., Lin, C.P., Yang, K.H., Ho, C.J., and Cheng, S. N., Applying FDEM, ERT and GPR at a site with soil contamination: A case study, Journal of Applied Geophysics, 121, 21–30, 2015.
Zhou, D. M., Deng, C. F., and Cang, L., Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents, Chemosphere, 56(3), 265–273, 2004.
何春蓀著,台灣地質概論:台灣地質圖說明書,經濟部中央地質調查所,71–117頁,1975年。
肖宏跃、雷宛,地電學教程。地質出版社,北京,288頁,2008年。
李似椿著、曹以松修訂,地下水,中國土木水利工程學會,14–15頁、33–35頁,1998年。
李冠樺,「電容耦合地電阻探測系統應用於地下管線與坑道之研究」,國立中央大學,碩士論文,97頁,2006年。
林澤宗,「地電法於地下掩埋物調查之研究」,國立中央大學,碩士論文,78頁,2012年。
洪雋倫,「利用自然電位法監測淺層土壤入滲歷程」,國立中央大學,碩士論文,77頁,2014年
徐漢倫,「台灣天然電磁場觀測研究」,國立中央大學,博士論文,100頁,2013年。
許芳鳴,「以地電阻影像法探討地滑敏感區電阻率構造與環境因子之關係」,國立中央大學,碩士論文,120頁,2015年。
經濟部水利署,台灣地下水資源圖說明書,45–65頁,2003年。
劉衍宏,「地電法應用於混凝土中鋼筋鏽蝕研究」,國立中央大學,碩士論文,81頁,2001年。
指導教授 陳建志(Chien-chih Chen) 審核日期 2016-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明