博碩士論文 103329016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.17.6.75
姓名 梁瑋鑫(Wei-Hsin Liang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究
(The effect of Tantalum additions on mechanical properties of Zr-Al-Co bulk amorphous alloy)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計
★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究
★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究
★ 鐵基塊狀金屬玻璃熱塑成形性之研究★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究
★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究
★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究
★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製★ 低密度雙相富鋁高熵合金之微結構觀察與其機械性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在塊狀非晶質合金中,添加金屬顆粒均勻的分佈在基地裡扮演障礙物的角色,可以有效地阻止剪切帶的傳播進而阻止材料被破壞,大幅提升非晶質合金的塑性。本研究在鋯-鋁-鈷非晶質合金中添加微米等級的鉭顆粒 (5 ~ 30 µm)金屬顆粒,利用鉭之高熔點與韌性作為散佈強化之金屬顆粒,藉此來增加本合金系統之塑性。
從XRD結果顯示添加0~2.5 vol.%的鉭顆粒之鋯-鋁-鈷塊狀非晶質合金均為非晶態,而添加超過2.5 vol.%則為結晶。隨著鉭添加量上升,結晶溫度(Tx)隨之下降且過冷液相區間(ΔTx)從53減少為43 K,γm從0.684(1 vol.%)微幅下降到0.671(2 vol.%),顯示鉭的添加使得玻璃形成能力下降。綜合熱分析結果可以得知,隨著鉭顆粒添加量越高,熱穩定性與玻璃形成能力越差。以SEM觀察試片橫截面無法明顯的觀察到鉭顆粒的存在,但在EDS的分析結果中發現與合金成份((Zr54Al17Co29)100-xTax)相符,證實了SEM觀測不到鉭顆粒是由於鉭已經與基材熔融在一起。(Zr54A17Co29)99Ta1在本合金系統中具有最佳機械性質,其硬度為525 ~ 545 Hv之間、真實降伏強度為2400 MPa、破裂強度為2927 MPa。塑性變形量隨著鉭添加量增加從1%到2%而有明顯的遞減的趨勢,由8.48%(1 vol.%)降至0.87%(2 vol.%),同時,從TEM圖中可以觀察到在鉭含量2 vol.%的成分中具有奈米晶的存在,推測其局部分布影響了棒材之機械強度。另外於Hank’s Balanced Salt Solution中進行腐蝕測試發現(Zr54A17Co29)99Ta1具有優於316SS的抗腐蝕性。
摘要(英) Based on the concept of dispersion toughening on the Zr-based bulk metallic glass (BMG) by adding Ta particles, a series of ZrAlCo-based bulk metallic glass composites (BMGCs) rods (2 mm in diameter) with 1-2 vol.% Ta particles (size of 5-30µm) have been successfully fabricated by arc-melting and suction casting.
The characterization of amorphous state, thermal properties, microstructure, mechanical properties and anti-corrosion ability were conducted by XRD, DSC, Vicker’s hardness tester, universal test machine, and Potentiostat, respectively.
The XRD results show that all the ZrAlCo alloy rods with 1-2.5 vol.% Ta particles are amorphous state, but the ZrAlCo alloy rods with more than 2.5 vol.% Ta particles are crystallized. According to the DSC results, the BMGC with the higher Ta additions presents lower crystallization temperature (Tx) and supercooled liquid temperature region (ΔTx). In parallel, the ΔTx decreasees from 53K (1 vol. %) to 43 K (2 vol. %). Moreover, the glass forming ability (GFA) decreases with increasing the Ta additions. Therefore, it is difficult to obtain an amorphous matrix when the additions of Ta particle is higher than 2 vol%.
The optima results of mechanical performance of the ZrAlCo BMGC occurs at Zr54A17Co29 with 1 vol.% Ta addition, the yield strength, fracture strength and plastic strain are2400 MPa, 2927 MPa and 8.48 % respectively. Furthermore, the Zr54A17Co29 with 1 vol.% Ta addition shows the best corrosion resistance in Hank’s Balanced Salt Solution.
關鍵字(中) ★ 鋯基非晶質合金
★ 降伏強度
★ 塑性變形量
關鍵字(英) ★ Zr-based amorphous alloy
★ yield stress
★ plastic deformation
論文目次 總目錄
摘要 I
Abstract II
致謝 III
總目錄 VI
表目錄 IX
圖目錄 XI
第一章、前言 1
第二章、理論基礎 3
2-1塊狀非晶質合金之發展 3
2-2非晶質合金之種類 5
2-3非晶質合金之製作 5
2-3-1實驗歸納法 5
2-3-2非晶質合金製程介紹 6
2-3-3微量元素添加之影響 9
2-4塊狀非晶質合金複材之發展 10
2-5非晶質合金之性質 10
2-5-1熱力學性質 10
2-5-1-1介穩態 11
2-5-1-2熱穩定性 11
2-5-1-3玻璃形成能力 13
2-5-2機械性質 15
2-5-2-1自由體積 15
2-5-2-2剪切轉換區 15
2-5-2-3破裂行為 16
2-5-3 耐腐蝕性質 17
2-5-4 抗菌性 17
2-6 電化學測試 18
第三章、實驗步驟與方法 20
3-1實驗目的 20
3-2合金製備 21
3-2-1合金配製 21
3-2-2合金熔煉 21
3-2-3非晶質棒材製作 21
3-3非晶性質分析 22
3-3-1微結構分析 22
3-3-1-1試片製作 22
3-3-1-2 X光繞射儀(XRD) 22
3-3-1-3掃描式電子顯微鏡(SEM) 23
3-3-1-4穿透式電子顯微鏡(TEM) 23
3-3-2成分分析 24
3-3-3熱性質分析 24
3-3-3-1試片製作 24
3-3-3-2熱示差掃描熱分析儀(DSC) 24
3-3-4機械性質分析 25
3-3-4-1維式硬度分析 25
3-3-4-2壓縮測試分析 25
3-3-5 電化學分析 27
3-3-5-1 動態極化法 27
第四章、結果與討論 28
4-1 X光繞射分析 28
4-2 熱性質分析 29
4-3 SEM分析 30
4-4 成分分析 31
4-5 TEM分析 31
4-6 機械性質分析 32
4-6-1 硬度分析 32
4-6-2 壓縮測試分析 33
4-7 電化學分析 34
第五章、結論 37
第六章、參考文獻 39
參考文獻 [1]. Z. P. Lu and C. T. Liu, “A new glass-forming ability criterion for bulk metallic glasses”, Acta Materialia, vol.50, 2002, pp.3501-3512.
[2]. W. L. Johnson, “Fundamental Aspects of Bulk Metallic Glass Formation in
Multicomponent Alloys”, Materials Science Forum, vol.225-227, 1996, pp.35-50.
[3]. A. Inoue, H. Koshiba, T. Zhang and A. Makino, “Wide supercooled liquid region and soft magnetic properties of Fe56Co7Ni7Zr0–10Nb (or Ta)0–10B20 amorphous alloys”, Applied Physics Letters, vol.83, 1998, pp.1967-1974.
[4]. A. Inoue and K. Hashimoto, Springer, “Amorphous and Nanocrystalline Materials”, 2001.
[5]. M. Naka, K. Hashimoto and T. Masumoto, “Change in corrosion behavior of amorphous Fe-P-C alloys by alloying with various metallic elements”,
Journal of Non-Crystalline Solids, vol.31, 1979, pp.355-365.
[6]. T. C. Chieh, J. Chu, C. T. Liu and J. K. Wu, “Corrosion of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glasses in aqueous solutions”, Materials Letters, vol.57, 2003, pp.3022-3025.
[7]. B. M. Im, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto, “The effect of phosphorus addition on the corrosion behavior of amorphous Fe-8Cr-P alloys in 9M H2SO4”, Corrosion Science, vol.37, 1995, pp.709-722.
[8]. H. Habazaki, H. Ukai, K. Izumiya and K. Hashimoto, “Corrosion behaviour of amorphous Ni-Cr-Nb-P-B bulk alloys in 6M HCl solution”, Materials Science and Engineering, vol.318, 2001, pp.77-86.
[9]. C. A. C. Sousa and C.S. Kiminami, “Crytallization and corrosion resistance of amorphous FeCuNbSiB”, Journal of Non-Crystalline Solids, vol.219,1997, pp.155-159.
[10]. W. H. Peter, R. A. Buchanan, C. T. Liu, P. K. Liaw, M. L. Morrison, J. A. Horton, C. A. Carmichael Jr. and J. L. Wright, “Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state”, Intermetallics, vol.10, 2002, pp.1157-1162.
[11]. L. Liu, C.L. Qiu, Q. Chen, K.C. Chan, S.M. Zhang, “Deformation behavior, corrosion resistance, and cytotoxicity of Ni-free Zr-based bulk metallic glasses”, Journal of Biomedical Materials Research, vol.86, 2008, pp.160-
169
[12]. M. Heilmaier, “Deformation behavior of Zr-based metallic glasses”, Materials Processing Technology, vol.117, 2001, pp.374-380.
[13]. A. Inoue and C. Fan, “High-strength bulk nanostructure alloys consisting of compound and amorphous phases”, Materials Research Society, vol.554, 1999, pp.143-148.
[14]. A. Inoue, “Mechanical properties of Zr-based bulk glassy alloys containing nanoscale compound particles”, Intermetallics, vol.8, 2000, pp.455-468.
[15]. X. H. Du, J. C. Huang, C. K. Hsieh, Y. H. Lai, H. M. Chen, J. D. C. Jang, P. K. Liaw, “ Phase-separated microstructures and shear-banding behavior in a designed Zr-based glass-forming alloy”, Intermetallics, vol.17, 2009,
pp.607-613.
[16]. J. S. C. Jang, J. Y. Ciou, J. C. Huang and X. H. Du, “Enhanced mechanical performance of Mg metallic glass with porous Mo particles”, Applied Physics Letters, vol.92, 2008, pp.11930.
[17]. Z. Zhu, H. Zhang, Z. Hu, W. Zang and A. Inoue, “Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity”, Scripta Materialia, vol. 62, 2010, pp.278-281
[18]. J.B. Li, J.S.C. Jang, C. Li, S. R. Jian, P. H. Tsai, J. D. Hwang, J. C. Huang and T. G. Nieh, “Significant plasticity enhancement of ZrCu-based bulk metallic glass composite dispersed by in situ and ex situ Ta particles”,Materials Science and Engineering, vol. 551, 2012, pp.249-254
[19]. W. Klement, R. H. Wilens and P. Duwez, “Non-crystalline Structure in solidified Gold-Silicon alloys”, Nature, vol.187, 1960, pp.869-870.
[20]. H. Jones, “Splat cooling and metastable phases”, Reports on Progress in Physics, vol.36, 1973, pp.1425-1497.
[21]. R. C. Ruhl, “Cooling rates in splat cooling”, Materials Science and Engineering, vol.1, 1967, pp.313-320.
[22]. 吳學陞,工業材料,vol.149,1999 年,pp.154
[23]. H. S. Chen, H. J. Leamy, C. E. Miller, “Preparation of glassy metals”, Annual Review of Materials Science, vol.10, 1980, pp.363-391.
[24]. A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Materials Transactions JIM, vol.32, 1991, pp.609-616.
[25]. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, “Mg–Cu–Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method”, Materials Transactions JIM, vol.33, 1992,pp.937-945
[26]. W. Zhang, Q. S. Zhang, C. L. Qin, A. Inoue, “Synthesis and properties of Cu–Zr–Ag–Al glassy alloys with high glass-forming ability”, Materials Science and Engineering, vol.148, 2008, pp.92-96.
[27]. A. Inoue, N. Nishiyama, H. M. Kimura, “Preparation and Thermal Stability of Bulk Amorphous Pd40Cu30Ni10P20 Alloy Cylinder of 72 mm in Diameter”, Materials Transactions JIM, vol.38, 1997, pp.179-183.
[28]. H. Kato, T. Wada, M. Hasegawa, J. Saida, A. Inoue, “Fragility and thermal stability of Pt- and Pd-based bulk glass forming liquids and their correlation with deformability”, Scripta Materialia, vol.54, 2006, pp.2023-2027.
[29]. Y. Q. Zeng, N. Nishiyama, A. Inoue, “Development of Ni-Pd-P-B Bulk Metallic Glasses with High Glass-Forming Ability”, Materials Transactions JIM, vol.50, 2009, pp.1243-1246.
[30]. Q. S. Zhang, W. Zhang, A. Inoue, “Preparation of Cu36Zr48Ag8Al8 Bulk Metallic Glass with a Diameter of 25 mm by Copper Mold Casting”, Materials Transactions, vol.48, 2007, pp.629-631.
[31]. V. Ponnambalam, S. J. Poon, G. J. Shiflet, “Fe-based bulk metallic glasses with diameter thickness larger than one centimeter”, Journal of Materials Research, vol.19, 2004, pp.1320-1323.
[32]. K. Amiya, A. Inoue, “Fe-(Cr,Mo)-(C,B)-Tm Bulk Metallic Glasses with High Strength and High Glass Forming Ability”, Reviews on Advanced Materials Science, vol.18, 2008, pp.27-29.
[33]. S. L. Zhu, X. M Wang, A. Inoue, “Glass-forming ability and mechanical properties of Ti-based bulk glassy alloys with large diameters of up to 1 cm”, Intermetallics, vol.16, 2008, pp.1031-1035.
[34]. J. D. Bernal, “Packing of Spheres : Co-ordination of Randomly Packed Spheres”, Nature, vol.185, 1960, pp.68.
[35]. P. H. Gaskell, “A new structural model for transition metal-metalloid glasses”, Nature, vol.276, 1978, pp.484.
[36]. A. Inoue, T. Negishi, H. M. Kimura, T. Zhang, A. R. Yavari, “High Packing Density of Zr- and Pd-Based Bulk Amorphous Alloys”, Materials Transactions JIM, vol.39, 1998, pp.318-321.
[37]. W. K. Luo, H. W. Sheng, F. M. Alamgir, J. M. Bai, J. H. He, E. Ma,“Icosahedral Short-Range Order in Amorphous Alloys”, Physical Review Letters, vol.92, 2004, pp.145502.
[38]. D. B. Miracle, “A structural model for metallic glasses”, Nature Materials, vol.3, 2004, pp.697-702.
[39]. H. W. Shen, W. K. Luo, F. M. Alamgir, J. M. Bai, E. Ma, “Atomic packing and short-to-medium-range order in metallic glasses”, Nature, vol.439, 2006, pp.419.
[40]. M. W. Chen, “Mechanical Behavior of Metallic Glasses: Microscopic Understanding of Strength and Ductility”, Annual Review of Materials Research, vol.38, 2008, pp.445-469.
[41]. A. Inoue, A. Takeuchi, “Recent development and application products of bulk glassy alloys”, Acta Materialia, vol.59, 2011, pp.2243-2267.
[42]. M. K. Miller, P. Liaw, Springer, “Bulk Metallic Glasses-An Overview”, 2008
[43]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Materials Science and Engineering, vol.226-228, 1997, pp.357-363.
[44]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions JIM, vol.36, 1995, pp.866-875.
[45]. A. Inoue, T. Zhang and A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys”, Materials Science Forum, vol.269-272, 1998, pp.855-864.
[46]. A. Inoue, A. Takeuchi and T. Zhang, “Ferromagnetic bulk amorphous alloys”, Metallurgical and Materials Transactions, vol.29, 1998, pp.1779-1793.
[47]. R. E. Reed-Hill, R. Abbaschian, Cengage Learning, “Physical Metallurgy Principles”, Third Edition, 1994, pp.278.
[48]. D. R. Gaskell, Taylor & Francis, “Introduction to the Thermodynamics of Materials”, Fourth Edition, pp.251.
[49]. C. R. M. Afonso, C. Bolfarini, C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F. Amateau, T. J. Eden, J. M. Galbraith, “Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1 alloy”, Journal of Non-Crystalline Solids, vol.284, 2011, pp.134-138.
[50]. Z. P. Lu, C. T. Liu, “Role of minor alloying additions in formation of bulk metallic glasses-a review”, Journal of Materials Science, vol.3, 2004, pp.3965-3974.
[51]. C. C. Hays, C. P. Kim, W. L. Johnson, “Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing in situ Formed Ductile Phase Dendrite Dispersions”, Physical Review Letters, vol.84, 2000, pp.2901-2904.
[52]. C. Fan, A. Inoue, “Ductility of bulk nanocrystalline composites and metallic glasses at room temperature”, Applied Physics Letters, vol.77, 2000, pp.46.
[53]. G. He, J. Eckert, W. Löser and L. Schultz, “Novel Ti-base nanostructure–dendrite composite with enhanced plasticity”, Nature Materials, vol.2, 2003, pp.33-37.
[54]. J. Saida, H. Kato, A. D. H. Setyawan, K. Yoshimi, A. Inoue, “Deformation- Induced Nanoscale Dynamic Transformation Studies in Zr-Al-Ni-Pd and Zr-Al-Ni-Cu Bulk Metallic Glasses”, Materials Transactions, vol.48, 2007, pp.1327-1335.
[55]. H. Chen, Y. He, G. J. Shiflet, S. J. Poon, “Deformation-induced nanocrystal formation in shear bands of amorphous alloys”, Nature, vol.367, 1994, pp.541.
[56]. J. J. Kim, Y. Choi, S. Suresh, A. S. Argon, “Nanocrystallization During Nanoindentation of a Bulk Amorphous Metal Alloy at Room Temperature”, Science, vol.295, 2002, pp.654-657.
[57]. G. Kumar, T. Ohkubo, T. Mukai, K. Hono, “Plasticity and microstructure of Zr–Cu–Al bulk metallic glasses”, Scripta Materialia , vol.57, 2007, pp.173-176.
[58]. H. Choi-Yim, W. L. Johnson, “Bulk metallic glass matrix composites”, Applied Physics Letters, vol.71, 1997, pp.3808.
[59]. H. Zhang, Z. F. Zhang, Z. G. Wang, K.Q. Qiu, H. F. Zhang, Q. S. Zang, Z. Q. Hu, “Fatigue damage and fracture behavior of tungsten fiber reinforced Zr-based metallic glassy composite”, Materials Science and Engineering, vol.418, 2006, pp.146-154.
[60]. D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M-L. Lind, M. D. Demetriou, W. L. Johnson, “Designing metallic glass matrix composites with high toughness and tensile ductility”, Nature Letters, vol.451, 2008, pp.1085.
[61]. T. A. Waniuk, J. Schroers and W. L. Johnson, “Critical cooling rate and thermal stability of Zr-Ti-Cu-Ni-Be alloys”, Applied Physics Letters, vol.78, 2001, pp.1213-1215.
[62]. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, “High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems”, Acta Materialia, vol.49, 2001, pp.2645-2652.
[63]. A. Inoue, T. Zhang, T. Masumoto, “Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region”, Materials Transactions JIM, voll.31, 1990, pp.177-183.
[64]. D. Turnbull. “Under what conditions can a glass be formed?”, Contemporary Physics, vol.10, 1969, pp.473.
[65]. T. D. Shen and R. B. Schwarz, “Bulk amorphous Pd-Ni-Fe-P alloys: preparation and characterization”, Journal of Materials Research, vol.14, 1999, pp.2107-2115.
[66]. T. D. Shen, R. B. Schwarz and J. D. Thompson, “Paramagnetism, superparamagnetism, and spin-glass behavior in bulk amorphous Pd-Ni-Fe- P alloys”, Applied Physics Letters, vol.85, 1999, pp.4110-4120.
[67]. B. S. Murty and K. Hono, “Formation of nanocrystalline particles in glassy matrix in melt-spun Mg-Cu-Y based alloys”, Materials Transactions JIM, vol.41, 2000, pp.1538-1544.
[68]. X. H. Du, J. C. Huang, C. T. Liu and Z. P. Lu, “New criterion of glass forming ability for bulk metallic glasses”, Applied Physics Letters, vol.101, 2007, p.086108.
[69]. 鄭振東,建宏出版社,非晶質金屬漫談,1990 年,p.39。
[70]. A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai and T. Masumoto, “Effect of Cu or Ag on the formation of coexistent nanoscale Al particles in Al-Ni-M-Ce (M=Cu or Ag) amorphous alloys”, Materials Transactions JIM, vol.35, 1994, pp.95-102.
[71]. C. V. Thompson, A. L. Greer, F. Spaepen, “Crystal nucleation in amorphous (Au100−yCuy)77Si9Ge14 alloys”, Acta Metallurgica, vol.31, 1983, pp.1883-1894.
[72]. L. E. Tanner, R. Ray, “Metallic glass formation and properties in Zr and Ti alloyed with Be - the binary Zr-Be and Ti-Be systems”, Acta Metallurgica, vol.27, 1979, pp.1727-1747.
[73]. Z. P. Lu, X. Hu, Y. Li and S. C. Ng, “Glass forming ability of La–Al–Ni–Cu and Pd–Si–Cu bulk metallic glasses”, Materials Science and Engineering, vol.304-306, 2001, pp.679-682.
[74]. Y. Li, S. C. Ng, C. K. Ong, H. H. Hng and T. T. Goh, “Glass forming ability of bulk glass forming alloys”, Scripta Materialia, vol.36, 1997, pp.783-787.
[75]. S. Guo, Z. P. Lu, C. T. Liu, “Identify the best glass forming ability criterion”, Intermetallics, vol.18, 2010, pp.883-888.
[76]. Z. Zheng, F. Wu, G. He, J. Eckert, “Mechanical properties, damage and fracture mechanisms of bulk metallic glass materials”, Journal of Materials Science & Technology, vol.23, 2007, pp.747-767.
[77]. D. Turnbull, M. H. Cohen, “On the Free‐Volume Model of the Liquid‐ Glass Transition”, Journal of Chemical Physics, vol.52, 1970, pp.3038.
[78]. F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgaica, vol.25, 1977, pp.407-415.
[79]. J. C. Huang, J. P. Chu, J. S. C. Jang, “Recent progress in metallic glasses in Taiwan”, Intermetallics, vol.17, 2009, pp.973-987.
[80]. A. S. Argon, “Plastic deformation in metallic glasses”, Acta Metallurgaica, vol.27, 1979, pp.47-58.
[81]. M. L. Falk, J. S. Langer, “Dynamics of viscoplastic deformation in amorphous solids”, Physical Review, vol.57, 1998, pp.7192-7205.
[82]. R. W. K. Honeycombe, Cambridge press, “Plastic Deformation of Metals”, 1984.
[83]. C. T. Liu, L. Heatherly, D. S. Easton, C. A. Carmichael, J. H. Schneibel, C. H. Chen, J. L. Wright, M. H. Yoo, J. A. Horton, A. Inoue, “Test environments and mechanical properties of Zr-base bulk amorphous alloys”, Metallurgical and Mateials Transactions, vol.29, 1998, pp.1811-1820.
[84]. Z. F. Zhang, G. He, J. Eckert, L. Schultz, “Fracture Mechanisms in Bulk Metallic Glassy Materials”, Physical Review Letters, vol.91, 2003, pp.45505.
[85]. P. E. Donovan, “A yield criterion for Pd40Ni40P20 metallic glass”, Acta Metallurgaica, vol.37, 1989, pp.445-456.
[86]. P. Lowhaphandu, J. J. Lewandowski, “Fracture toughness and Notched toughness of bulk amorphous alloy Zr-Ti-Ni-Cu-Be”, Scripta Materialia, vol.38, 1998, pp.1811-1817.
[87]. C. L. Qiu, L. Liu, M. Sun, S. M. Zhang, “The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of Zr-Al-Cu-Ni bulk metallic glasses in artificial body fluid”, Journal of Biomedical Materials Research, vol.75, 2005, pp.950-956.
[88]. A. Inoue, B. L. Shen, A. R. Yavari, A. L. Greer, “Mechanical properties of Fe-based bulk glassy alloys in Fe–B–Si–Nb and Fe–Ga–P–C–B–Si systems”, Journal of Materials Research, vol.18, 2003, pp.1478-1492.
[89]. E. McCafferty, “Validation of corrosion rates measured by the Tafel extrapolation method”, Corrosion Science, vol.47, 2005, pp.3202-3215.
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2016-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明