博碩士論文 103329001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:99 、訪客IP:18.191.26.82
姓名 李鎮谷(Chen-Ku Li)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鐵基塊狀金屬玻璃熱塑成形性之研究
(The study of thermoplastic forming ability on Fe-based bulk metallic glass)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計
★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究
★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究
★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究
★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究
★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究
★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製★ 低密度雙相富鋁高熵合金之微結構觀察與其機械性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用真空電弧熔煉結合真空吸鑄法製備Fe41Cr15Mo14C12B9Co7Y2合金,經由X光繞射與示差掃瞄熱分析結果初步判定為非晶結構,進一步由DSC的分析可得知其玻璃形成能力指標Trg為0.59、γ為0.4、γm為0.69,且其過冷液相區(ΔTx)為74 K。為了進一步了解鐵基非晶質合金的熱塑形成能力,使用熱機械分析儀測量於過冷液相區,觀察樣品隨著溫度變化所產生的形狀變化,得知鐵基非晶質合金熱塑變形軟化點為903 K,鐵基非晶質合金的黏滯流黏度隨溫度與應變速率上升均呈現下降趨勢。
依據示差掃瞄熱分析與熱機械分析儀分析結果,在不同溫度(873 K、883 K、893 K與903 K)、不同應變速率下(5x10-2 s-1~1x10-3 s-1)下針對2 mm鐵基非晶質棒材進行壓縮測試,進一步探討在過冷液相區之變形行為。結果顯示,同溫度下,隨著應變速率上升、流變應力隨之增加;再者,當應變速率高於5x10-2 s-1時,所有試片於測試後均破裂。由於鐵基非晶質合金軟化點相對溫度較高,所需的升溫時間較長,鐵基非晶質合金內部開始產生結晶現象,因此當應變速率太低時會導致試片有硬化現象。綜觀加工溫度與應變速率工作窗,最佳熱塑成形加工條件為加工溫度873 K,應變速率2.5x10-3 s-1。
摘要(英) A Fe-based bulk amorphous steel (BAS), Fe41Cr15Mo14C12B9Co7Y2, was successfully fabricated by suction casting and confirmed its amorphous state by X-ray diffraction and differential scanning calorimetry analysis. The Tg, Tx, γ, γm and ΔT are 832 K, 906 K, 0.4, 0.69, and 74 K, respectively. The thermoplastic deformation during supercooled liquid region was firstly investigated by thermal mechanical analysis (TMA).
TMA results reveal that the viscosity decreases with increasing temperature under the same strain rate and no specimen is deformable under the strain rate of 5x10-2 s-1 or higher. Based on the TMA results, the lowest viscosity is about 5x1010 Pa‧s. The thermoplastic deformation behavior of Fe-based BAS was investigated at different temperatures within the supercooled temperature region (namely 873 K, 883 K, 893 K, 903 K) with different strain rate (5x10-2 s-1~1x10-3s-1). The Fe-based BAS only exhibits Newtonian flow at lower strain rate (less than 5x10-3 s-1 at 873 K~883 K, and less than 7.5x10-3 s-1 at 893 K~903 K). Moreover, the Fe-based BAS was fractured during thermoplastic forming process at strain rate higher than 5x10-2 s-1. TEM analysis were carry out for further investigating the amorphous state of the as cast sample and the sample after thermoplastic forming. The Fe-based BAS sample after thermoplastic forming at 903 K with 2.5x10-3 s-1 strain rate was found to have some nano-size crystalline particles embedded locally in amorphous matrix.
關鍵字(中) ★ 鐵基非晶質合金
★ 過冷液相區
★ 熱塑成形
關鍵字(英) ★ Bulk amorphous steel
★ Supercooled liquid region,
★ Thermoplastic forming
論文目次 目錄
中文摘要 I
Abstract II
致謝 III
目錄 V
表目錄 IX
圖目錄 X
第一章 緒論 1
1-1前言 1
1-2 研究方法及目的 3
第二章 基礎理論 10
2-1 非晶質合金 10
2-1-1序化與非序化 10
2-2 非晶質合金發展 11
2-3 非晶質合金種類 12
2-3-1 鐵基非晶質合金系統 13
2-4 非晶質合金之設計與製作 13
2-4-1 實驗歸納法則 13
2-4-2 非晶質合金製程 15
2-5 非晶質合金性質 17
2-5-1 熱力學 17
2-5-1-1 特徵溫度 17
2-5-1-2 玻璃形成能力 18
2-5-2 熱性質分析 20
2-5-2-1熱性質分析-非恆溫分析Kissinger plot 20
2-5-2-2熱性質分析-恆溫結晶率測試 20
2-5-2-3熱性質分析-自由體積(退火測試) 21
2-5-3 機械性質 21
2-5-3-1維氏硬度測試 22
2-5-3-2破裂韌性 23
2-5-3-3奈米壓痕 23
2-5-4熱機械性質分析 24
2-5-4-1熱機械分析儀 24
2-5-4-2黏滯流計算(Viscosity) 25
2-5-4-3熱膨脹係數 26
2-5-4-4剪切轉化區 26
2-5-4-5應變速率敏感係數m值 27
第三章 實驗步驟與方法 32
3-1 實驗目的 32
3-2 合金材料製備 32
3-2-1 合金配置 32
3-2-2 合金融煉 33
3-2-3真空吸鑄法 33
3-3 材料性質分析 34
3-3-1 X光繞射儀 34
3-3-2熱性質分析 34
3-3-3成分分析 35
3-3-4塊材硬度與楊氏模數量測 35
3-3-5熱機械性質分析(TMA) 36
3-4熱塑加工成形性測試 36
3-4-1壓縮測試(MTS) 36
3-4-2熱塑成形 37
3-4-3微結構分析 37
3-4-3-1掃描式電子顯微鏡(SEM) 37
3-4-3-2穿透式電子顯微鏡(TEM) 37
第四章 結果與討論 51
4-1鑄造態 51
4-1-1 X光繞射分析 51
4-1-2非恆溫熱性質分析 51
4-1-3恆溫熱性質分析 52
4-1-4成分分析 53
4-1-5掃描式電子顯微鏡(SEM) 53
4-1-6穿透式電子顯微鏡(TEM) 54
4-1-7熱機械分析(TMA) 54
4-2退火測試 56
4-2-1 X光繞射分析 56
4-2-2非恆溫熱性質分析 56
4-2-3機械性質 56
4-3熱塑成形 57
4-3-1 X光繞射分析 57
4-3-2熱壓縮測試 57
4-3-3 掃描式電子顯微鏡(SEM) 61
4-3-4 穿透式電子顯微鏡(TEM) 61
4-3-5熱塑成形-齒輪 62
第五章 結論 86
第六章 參考文獻 88

表目錄
表2- 1. 鐵基金屬玻璃分類 28
表4- 1. 鐵基非晶質合金之元素混合熱表 (單位: kJ/mol) 63
表4- 2. 鐵基系統之原子半徑分布 (單位: nm) 63
表4- 3. 熱性質分析 (單位: K) 63
表4- 4. 玻璃形成能力分析 (單位: K) 63
表4- 5. 鑄鐵及硼鐵成分 (at %) 64
表4- 6. 經由EPMA分析鐵基非晶質塊材成分 (at %) 64
表4- 7. 退火處理後之非恆溫熱性質分析 (單位: J‧mg-1‧K-1) 64
表4- 8. 鐵基非晶質合金之硬度、破裂韌性及楊氏模數 65
表4- 9. MTS熱塑成形試驗所得之流變應力 (單位:MPa) 65












圖目錄
圖1 1. 材料顯微結構 (a)非晶質合金結構材料 (b)傳統結晶結構材料 4
圖1- 2. 非晶質合金熱分析曲線圖 4
圖1- 3. 金屬玻璃經過不同溫度退火處理前後比較圖 5
圖1- 4. 結晶材料與非晶材料在熔點下之結構差異 5
圖1- 5. 非晶質材料與一般結晶材料之X光繞射分析比較 6
圖1- 6. 非晶質材料與其他結晶材料內部晶粒尺寸比較 6
圖1- 7. 各元素半徑尺寸大小 7
圖1- 8. 歷年來各基材棒材可達最大直徑 7
圖1- 9. 原子獲得能量跳躍示意圖 8
圖1- 10. 運用Zr-Al-Ni-Cu非晶質合金製成之高爾夫球頭 8
圖1- 11. 熱塑成形齒輪示意圖 9
圖1- 12運用Zr-Ti-Cu-Ni-Be非晶質合金製作微機電系統 9
圖2- 1. 撞擊激冷法 28
圖2- 2. 具較深共晶點之合金相圖 29
圖2- 3. 非晶質材料與一般材料之拉伸強度、硬度比較 29
圖2- 4. 維克式硬度壓痕示意圖 30
圖2- 5. 奈米壓痕儀結構圖 30
圖2- 6. 奈米壓痕負載-深度圖 30
圖2- 7. 奈米壓痕剖面圖 31
圖2- 8. 於過冷液相區壓應力下試片演變圖 31
圖2- 9. 一般鋯基非晶質合金脆裂弛豫時間範例圖 31
圖3- 1. 實驗流程 38
圖3- 2. 合金配置原料 38
圖3- 3. 電子天秤外觀 39
圖3- 4. 電弧融煉腔體 39
圖3- 5. (a)電弧融煉使用之氬焊機 (b)電弧熔煉腔體內部結構圖 40
圖3- 6. 真空吸鑄爐體 40
圖3- 7. (a)真空吸鑄使用之氬焊機 (b)吸鑄式鑄造結構圖 41
圖3- 8. ψ2-3-4 mm銅模 41
圖3- 9. ψ2-3-4 mm 棒材 42
圖3- 10. 鑽石慢速切割機 42
圖3- 11. 研磨製具 43
圖3- 12. X光繞射分析儀 43
圖3- 13. Mettler DSC分析儀 44
圖3- 14. Netzsch 高溫DSC分析儀 44
圖3- 15. 高解析度場發射電子微探儀 (FE-EPMA) 45
圖3- 16. 維克氏硬度試驗機 45
圖3- 17.奈米壓痕試驗機 46
圖3- 18. 熱機械分析儀TMA 46
圖3- 19. 萬能試驗機 47
圖3- 20. 加熱設備及萬能試驗機組 47
圖3- 21. (a)壓縮模具組 (b)壓縮測試示意圖 48
圖3- 22. 試驗之棒材 (ψ4mm棒材,左為俯視圖,右為側視圖) 48
圖3- 23. 齒輪製造模具 48
圖3- 24. 掃描式電子顯微鏡 (SEM) 49
圖3- 25. 聚焦離子束儀器 (FIB) 49
圖3- 26. 穿透式電子顯微鏡 (TEM) 50
圖4- 1. Fe41Cr15Mo14C12B9Co7Y2之4 mm棒材XRD圖 66
圖4- 2. Fe41Cr15Mo14C12B9Co7Y2基材在不同升溫速率下之DSC圖 66
圖4- 3. Fe41Cr15Mo14C12B9Co7Y2基材Tg及Tx線性回歸圖 67
圖4- 4. 運用Kissinger plot圖計算活化能 67
圖4- 5. Fe41Cr15Mo14C12B9Co7Y2基材在不同升溫速率下之HTDSC圖 68
圖4- 6. Fe41Cr15Mo14C12B9Co7Y2基材熔點線性回歸圖 68
圖4- 7. Fe41Cr15Mo14C12B9Co7Y2基材在不同恆溫溫度下之放熱峰DSC圖 69
圖4- 8. Fe41Cr15Mo14C12B9Co7Y2基材之結晶率與時間關係圖 69
圖4- 9. Fe41Cr15Mo14C12B9Co7Y2鑄造態之表面結構形貌圖 (a)100倍 (b) 500倍 (c) 1000倍 (d) 5000倍 (e) 10000倍 (f) 30000倍 70
圖4- 10. Fe41Cr15Mo14C12B9Co7Y2鑄造態之TEM微結構分析 (a)10000倍 (b)10000倍 (c)100000倍 (d)100000倍 71
圖4- 11. 熱機械分析 (TMA) 72
圖4- 12. Fe41Cr15Mo14C12B9Co7Y2基材之黏性流對溫度關係圖 72
圖4- 13. Fe41Cr15Mo14C12B9Co7Y2運用TMA結果計算之黏性對應變速率關係圖 73
圖4- 14. 於773 K下進行不同持溫時間之退火處理試片XRD圖 73
圖4- 15. Fe41Cr15Mo14C12B9Co7Y2基材經不同時間退火處理後之DSC圖 74
圖4- 16. Fe41Cr15Mo14C12B9Co7Y2基材經不同時間退火處理後之DSC放大圖 74
圖4- 17. 2 mm棒材於873 K下熱塑成形前後XRD比較圖 75
圖4- 18. 2 mm棒材於883 K下熱塑成形前後XRD比較圖 75
圖4- 19. 2 mm棒材於893 K下熱塑成形前後XRD比較圖 76
圖4- 20. 2 mm棒材於903 K下熱塑成形前後XRD比較圖 76
圖4- 21. 熱塑成形壓縮測試前後比較圖 (a)俯視圖 (b)側視圖 77
圖4- 22. Fe41Cr15Mo14C12B9Co7Y2在不同溫度、不同應變速率下之真實應力-真實應變曲線圖 (a)873 K (b)883 K (c)893 K (d)903 K 79
圖4- 23. Fe41Cr15Mo14C12B9Co7Y2壓縮試驗結果計算黏度與應變速率關係圖 79
圖4- 24. Fe41Cr15Mo14C12B9Co7Y2在相同應變速率下溫度與流變應力之關係圖 80
圖4- 25. Fe41Cr15Mo14C12B9Co7Y2熱塑成形結果計算應變速率敏感指數m值 80
圖4- 26. Fe41Cr15Mo14C12B9Co7Y2熱塑成形齒輪之表面結構形貌圖 (a)100倍 (b) 500倍 (c) 1000倍 (d) 5000倍 (e) 10000倍 (f) 30000倍 81
圖4- 27. Fe41Cr15Mo14C12B9Co7Y2熱塑成形齒輪之內部剖面結構 (a)100倍 (b) 500倍 (c) 1000倍 (d) 5000倍 (e) 10000倍 (f) 30000倍 82
圖4- 28. Fe41Cr15Mo14C12B9Co7Y2熱塑成形後(873 K, 2.5x10-1 s-1)之TEM微結構分析 (a)10000倍 (b)10000倍 (c)100000倍 (d)100000倍 (e)10000倍 (f)10000倍 83
圖4- 29. Fe41Cr15Mo14C12B9Co7Y2熱塑成形後(903 K, 2.5x10-1 s-1)之TEM微結構分析 (a)10000倍 (b)10000倍 (c)100000倍 (d)100000倍 84
圖4- 30. Fe41Cr15Mo14C12B9Co7Y2熱塑成型後之結晶相擇區繞射分析 (a) YC2花狀析出物zone axis[331] (b) (Cr0.5Mo0.5)B2結晶相,zone axis[234] 85
圖4- 31. Fe41Cr15Mo14C12B9Co7Y2於773 K應變速率2.5x10-3 s-1下進行熱塑成形加工齒輪外觀全貌 85



參考文獻 [1] A. C. Lund, "Topological and chemical arrangement of binary alloys during severe deformation", Journal of Applied Physics, Vol. 95 pp. 4815 (2004).
[2] H. S. Chen, H. J. Leamy, and C. E. Miller, "Preparation of glassy metals", Ann. Rev. Mater. Sci. 10:363-91 (1980).
[3] R. Babilas, R. Nowosielski, "Iron-based bulk amorphous alloys", Archives of materials science and engineering, Vol. 44 Issue 1 pp. 5-27 (2010).
[4] A. Inoue, K. Hashimoto, "Amorphous and Nanocrystalline Materials", (2001).
[5] C. Suryanarayana, A. Inoue, "Bulk metallic glasses", LLC, Taylor and Francis Group, (2011).
[6] M. Ylönen, T. Vähä-Heikkilä, H. Kattelus, "Amorphous metal alloy based MEMS for RF applications", Sensors and Actuators A, Vol. 132 pp. 283-288 (2006).
[7] G. Ruitenberg, P. D. Hey, F. Sommer, and J. Sietsma, "Pressure-Induced Structural Relaxation in Amorphous Pd40Ni40P20: The Formation Volume for Diffusion Defects", Physical review letters, Vol. 79 Number 24 (1997).
[8] 鄭振東編譯,"非晶質金屬漫談",建宏出版社,pp. 39,1990年。
[9] J. Kramer, "Produced the first amorphous metals through vapor deposition", Annalen of Physics, Vol. 411 pp. 37 (1934).
[10] A. Brenner, D. E. Couch, and E. K. Williams, "Electrodeposition of Alloys of Phosphorus with Nickel or Cobalt", Journal of Research of the National Bureau of Standards, Vol. 44 pp. 109-122 (1950).
[11] W. Klement, R. H. Willens, and P. Duwez, "Non-crystalline Structure in solidified Gold-Silicon alloys", Nature, Vol. 187 pp. 869-870 (1960).
[12] H. S. Chen, "Glassy metals", Rep. Prog. Phys, Vol. 43 p. 364 (1980).
[13] C. C. Koch, O. B. Cavin, C. G. McKamey, and J. O. Scarbrough, "Preparation of amorphous Ni60Nb40 by mechanical alloying", Applied Physics Letters, Vol. 43 pp. 1017-1019 (1983).
[14] A. Inoue, "High strength bulk amorphous alloys with low critical cooling rates," Materials Transactions JIM, Vol. 36 pp. 866-875 (1995).
[15] A. Inoue, T. Zhang, and T. Masumoto, "Production of Amorphous Cylinder and Sheet of La55Al25Ni20 Alloy by a Mettallic Mold Casting Method", Material Transactions JIM, Vol. 31 pp. 425-428 (1990).
[16] A. Inoue, A. Kato, T. Zhang, and S. G. Kim, "Mg-Cu-Y Amorphous Alloys With High Mechanical Strengths Produced by a Metallic Mold Casting Method", Materials Transactions JIM, Vol. 32 pp. 609-616 (1991).
[17] A. Inoue, T. Nakamurat, N. Nishiyamatt, and T. Masumoto, "Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method", Materials Transactions JIM, Vol. 33 pp. 937-945 (1992).
[18] A. Inoue, A. Takeuchi, "Recent development and application products of bulk glassy alloys", Acta Materialia, Vol. 59 pp. 2243-2267 (2011).
[19] A. Inoue, B. Shen, A. Takeuchi, "Developments and Applications of Bulk Glassy Alloys in Late Transition Metal Base System", Materials Transactions, Vol. 47 pp. 1275-1285 (2006).
[20] A. Inoue, Y. Shinohara, J. S. Gook, "Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting", Material Transactions, Vol. 36 pp. 1427-1433 (1995).
[21] R. Abbaschian, L. Abbaschian, R. E. Reed-hill, Physical Metallurgy Principles, Third edition, p. 278 (1994).
[22] A. Inoue, "Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys", Acta Materialia, Vol. 48 pp. 279-306 (2000).
[23] Q. Jing, Y. Zhang, D. Wang, and Y. Li, "A Study of the Glass Forming Ability in ZrNiAl Alloys", Materials Science and Engineering:A, Vol. 441 pp. 106-111 (2006).
[24] Z. P. Lu, C. T. Liu, "Role of minor alloying additions in formation of bulk metallic glasses: A Review", Journal of Material Science, Vol. 39 pp. 3965-3974 (2004).
[25] Z. P. Lu, C. T. Liu, W. D. Porter "Role of yttrium in glass formation of Fe-based bulk metallic glasses", Applied Physics Letters, Vol. 83 Number 13 pp. 2581-2583 (2003)
[26] J. Shen, Q. Chen, J. Sun, H. Fan, G. Wang, "Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy", Applied Physics Letters, Vol. 86 pp. 151907-1-3 (2005).
[27] A. Inoue, Materials Transactions JIM, Vol. 36 pp. 866 (1995).
[28] Z. P. Lu, C. T. Liu, "A new glass-forming ability criterion for bulk metallic glasses", Acta Materialia, Vol. 50 pp. 3501-3512 (2002).
[29] X. H. Du, J. C. Huang, C. T. Liu, and Z. P. Lu, "New Criterion of Glass Forming Ability for Bulk Metallic Glasses", Journal of Applied Physics, Vol. 101 pp. 086108-1-3 (2007).
[30] Y. Li, S. C. Ng, C. K. Ong, H. H. Hng, T. T. Goh, "Glass forming ability of bulk glass forming alloys", Scr Mater, Vol. 36 p. 783 (1997).
[31] S. Guo, Z. P. Lu, C. T. Liu, "Identify the best glass forming ability criterion", Intermetallics, Vol. 18 pp. 883-888 (2010).
[32] Y. Lu, Y. Huang, Wei Zheng, Jun Shen, "Free volume and viscosity of Fe-Co-Cr-Mo-C-B-Y bulk metallic glasses and their correlation with glass-forming ability", Journal of Non-Crystalline Solids, Vol. 358 pp. 1274-1277 (2012).
[33] Y. Kawamura, T. Itoi, T. Nakamura, A. Inoue, "Superplasticity in Fe-based metallic glass with wide supercooled liquid region", Materials Science and Engineering, A304-306 pp. 735-739 (2001).
[34] J. Buenz, K. A. Padmanabhan, G. Wilde, "On the applicability of a mesoscopic interface sliding controlled model for understanding superplastic flow in bulk metallic glasses", Intermetallics, Vol. 60 pp. 50-57 (2015).
[35] P. H. Tsai , A. C. Xiao , J. B. Li , J. S. C. Jang , J. P. Chu , J. C. Huang, "Prominent Fe-based bulk amorphous steel alloy with large supercooled liquid region and superior corrosion resistance", Journal of alloys and compounds, Vol. 586 pp. 94-98 (2014).
[36] J. S. C. Jang, C. F. Chang, Y. C. Huang, J. C. Huang, W.J. Chiang, C.T. Liu, "Viscous flow and microforming of a Zr-base bulk metallic glass", Intermetallics, Vol. 17 pp. 200-204 (2009).
[37] P. Murali, U. Ramamurty, "Embrittlement of a bulk metallic glass due to sub-Tg annealing", Acta Materialia, Vol. 53 pp. 1467-1478 (2005).
[38] Y. Kawamura, T. Nakamura, H. Kato, H. Mano, A. Inoue, "Newtonian and non-Newtonian viscosity of supercooled liquid in metallic glasses", Materials Science and Engineering, A304-306 pp. 674-678 (2001).
[39] Y. Kawamura, T. Nakamura, A. Inoue, "Superplasticity in Pd40Ni40P20 metallic glass", Scripta Materialia, Vol. 39 No. 3 pp. 301-306 (1998).
[40] G. Wang, J. Shen, J. F. Sun , Y. J. Huang, J. Zou, Z. P. Lu, Z. H. Stachurski, B. D. Zhou, "Superplasticity and superplastic forming ability of a Zr-Ti-Ni-Cu-Be bulk metallic glass in the supercooled liquid region", Journal of Non-Crystalline Solids, Vol. 351 pp. 209-217 (2005).
[41] J. Shen, G. Wang, J. F. Sun, Z. H. Stachurskic, C. Yan, L.Ye, B. D. Zhou, "Superplastic deformation behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk metallic glass in the supercooled liquid region", Intermetallics, Vol. 13 pp. 79-85 (2005).
[42] K. C. Chan, L. Liu, J. F. Wang, "Superplastic deformation of Zr55Cu30Al10Ni5 bulk metallic glass in the supercooled liquid region", Journal of Non-Crystalline Solids, Vol. 353 pp. 3758-3763 (2007).
[43] J. Ferenc, T. Erenc-Sedziak, M. Kowalczyk, T. Kulik, "The supercooled liquid region span of Fe-based bulk metallic glasses", Journal of Alloys and Compounds, Vol. 495 pp. 327-329 (2010).
[44] B. Bendjemil, A. Bouchareb, A. Belbah, J. Bougdira, R. Piccin, M. Baricco, "Crystallization Behavior of Fe50−?Cr15Mo14C15B6M? (? = 0, 2 and M = Y, Gd) BMG and ribbons by in situ high temperature X-ray diffraction", Chinese Physics Letters. Vol. 29 No. 10 pp. 108-103 (2012).
[45] P. S. Singh, R. L. Narayan, Indrani Sen, D. C. Hofmann, U. Ramamurty, "Effect of strain rate and temperature on the plastic deformation behaviour of a bulk metallic glass composite", Materials Science and Engineering, A 534 pp. 476-484 (2012).
[46] D. V. Louzguine-Luzgin, A. I. Bazlov, S. V. Ketov, A. Inoue, "Crystallization behavior of Fe- and Co-based bulk metallic glasses and their glass-forming ability", Materials Chemistry and Physics, Vol. 162 pp. 197-206 (2015).
[47] J. D. Ju, "Shear transformation zones in metallic glasses", (2014).
[48] S. Xie, E. P. George, "Hardness and shear band evolution in bulk metallic glasses after plastic deformation and annealing", Acta Materialia, Vol. 56 pp. 5202-5213 (2008).
[49] B. G. Yoo, J. I. Jang, "A study on the evolution of subsurface deformation in a Zr-based bulk metallic glass during spherical indentation", Journal of Physics D: Applied Physics, Vol. 41 pp. 7 (2008).
[50] M. Stoica, N. V. Steenberge, J. Bednarcik, N. Mattern, H. Franz, J. Eckert, "Changes in short-range order of Zr55Cu30Al10Ni5 and Zr55Cu20Al10Ni10Ti5 BMGs upon annealing", Journal of Alloys and Compounds, Vol. 506 pp. 85-87 (2010).
[51] G. Kumar, P. Neibecker, Y. H. Liu, J. Schroers, "Critical fictive temperature for plasticity in metallic glasses", Nature Communications 4, article number 1536 (2013).
[52] Y. Lu, Y. Huang, X. Lu, Z. Qin, J. Shen, "Specific heat capacities of Fe–Co–Cr–Mo–C–B–Y bulk metallic glasses and their correlation with glass-forming ability", Materials Letters, Vol. 143 pp. 191-193 (2015).
[53] Y. Lu, Y. Huang, J. Shen, X. Lu, Z. Qin, Z. Zhang, "Effect of Co addition on the shear viscosity of Fe-based bulk metallic glasses", Journal of Non-Crystalline Solids, Vol. 403 pp. 62-66 (2014).
[54] S. V. Ketov, A. Inoue, H. Kato, D. V. Louzguine-Luzgin, "Viscous flow of Cu55Zr30Ti10Co5 bulk metallic glass in glass-transition and semi-solid regions", Scripta Materialia, Vol. 68 pp. 219-222 (2013).
[55] J. Pan, Q. Chen, L. Liu, Y.Li, "Softening and dilatation in a single shear band", Acta Materialia, Vol. 59 pp. 5146-5158 (2011).
[56] S. F. Guoa, K. C. Chan, L. Liu, "Notch toughness of Fe-based bulk metallic glass and composites", Journal of Alloys and Compounds, Vol. 509 pp. 9441-9446 (2011).
[57] B. Shen, C. Chang, A. Inoue, "Formation, ductile deformation behavior and soft-magnetic properties of (Fe,Co,Ni)-B-Si-Nb bulk glassy alloys", Intermetallics, Vol. 15 pp. 9-16 (2007).
[58] H. Kato, A. Inoue, H.S. Chen, "Softening and heating behaviors during the nonlinear viscous flow in a Zr-based bulk metallic glass", Journal of Non-Crystalline Solids, Vol. 353 pp. 3764-3768 (2007).
[59] A. S. Argon, "Plastic deformation in metallic glasses", Acta Metall, Vol. 27 pp. 47-58 (1979).
[60] 黃宥棋, "Thermal plastic behavior and microstructure of (Zr53Cu30Ni9Al8)99.5Si0.5 bulk metallic glass", (2008).
[61] 李威錚, "Thermal plastic behavior and microstructure of Mg58Cu28.5Gd11Ag2.5 metallic glass with porous Mo particles", (2008).
[62] J. Schroers, T. Nguyen, S. O’Keeffe, A. Desai, "Thermoplastic forming of bulk metallic glass-Applications for MEMS and microstructure fabrication", Materials Science and Engineering, A449–451 pp. 898–902 (2007).
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2016-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明