博碩士論文 103329011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.189.143.127
姓名 林姿君(Zi-Jun Lin)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 藉由金的添加增益鈷基低鉑觸媒之氧氣還原反應
(The Enhancement of Oxygen Reduction Reaction Performance of Co-based low Pt catalysts through Au Addition)
相關論文
★ 具有高活性和高穩定性鈀鐵合金氫化物應用於酸性介質析氫反應之研究★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究
★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性
★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應
★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應
★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應
★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應
★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鉑基合金做為質子交換膜燃料電池(polymer electrolyte membrane fuel cells, PEMFC)的陰極觸媒一直以來被廣泛研究,然而,鉑的昂貴且稀少性成為發展陰極觸媒之重要挑戰,因此設計低鉑或不含鉑的陰極觸媒為PEMFC實際應用的重要課題。因此,本研究利用不同的還原方法製備出不同結構之鈷基低鉑觸媒。隨後透過觸媒的設計,在鈷基低鉑觸媒中添加金,其利用總體效應(ensemble effects)改質結構,並可防止在長時間測試時觸媒的自主溶解。對於觸媒藉由金的添加以及合金化的加成效應對於氧氣還原反應(oxygen reduction reaction, ORR)之活性增益將在本研究中闡述。所製備觸媒之ORR活性、形貌、結構、表面組成、化學組成以及未填滿d軌域(number of unoccupied d-states, hTs)分別使用旋轉盤電極(rotating disk electrode),高解析度穿透式電子顯微鏡(high resolution transmission electron microscopy), X光繞射儀(X-ray diffraction),光電子能譜儀(X-ray photoelectron spectroscopy), 感應耦合電漿原子發射光譜分析儀(inductively coupled plasma-atomic emission spectrometer)以及X光吸收光譜(X-ray absorption spectroscopy)等儀器鑑定。
研究結果分為兩部分,第一部分為用不同還原條件製備金屬負載量為40 wt%與不同結構之鈷基低鉑觸媒且依其還原條件命名為CoPt-CO570, CoPt-H470, CoPt-H570和CoPt-NaBH4。而鈷基低鉑觸媒之所以具有明顯的ORR活性增益在於鈷鉑合金相的存在以及表面富含鉑。經由加速穩定度測試(accelerated durability test, ADT),CoPt-H470有最好的ORR穩定度是由於氧化鈷的存在,其排斥吸附於鉑上的含氧物種,使其從鉑上較易脫附,可增加鉑的活性位置。
第二部分分別用3, 10, 12,和25 at %的金作為改質劑添加於金屬負載量為40 wt % 之鈷基低鉑觸媒中,並分別命名為CoPtAu-1/C, CoPtAu-2/C, CoPtAu-3/C和CoPtAu-4/C。在所有以金做為改質劑的鈷基低鉑觸媒中,其活性約為商用觸媒Pt/C 2.6-9.2倍,而CoPtAu-1/C 有著最好的ORR活性表現,當1000圈ADT之後,CoPtAu-1/C 的ORR活性只衰退了原本的15 %,其對ORR穩定性的增益是源於以金為核,底層的金會避免表面的鉑收縮進底層進而破壞觸媒的結構。
摘要(英) Pt-based alloys as cathode catalysts of polymer electrolyte membrane fuel cells (PEMFC) have been widely researched; however, the main challenges of Pt-based cathode catalysts are the high cost and Pt scarcity. Thus, the design of low or non Pt cathodic materials is an important task for the practical application of PEMFCs. Therefore, in this study, carbon supported CoPt catalysts with different structures can be prepared by different reducing conditions. Then through catalysts design, we have prepared carbon-support CoPtAu nanoparticles with low Pt loading and Au modification, which takes the advantages of ensemble effects and prevents catalysts from vulnerable dissolution during long term test. Their synergistic effect of alloying and Au modification on the oxygen reduction reaction (ORR) performance is also elucidated. The ORR activities, morphologies, structures, surface compositions, chemical compositions, and un-filled d-states (hTs) of the carbon-supported CoPt and CoPtAu catalysts are analyzed by rotating disc electrode, high resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma-atomic emission spectrometer and X-ray absorption spectroscopy, respectively.
This study is divided into two parts. In the first part, carbon-supported CoPt catalysts with metal loading of 40 wt% and different structures have been prepared (named as CoPt-CO570, CoPt-H470, CoPt-H570 and CoPt-NaBH4). A significant enhancement of ORR activity for CoPt catalysts can be owing to the existence of CoPt alloy phase and an enrichment of surface Pt. With respect to accelerated durability test (ADT), the CoPt-H470 presents the best ORR durability among all catalysts, suggesting that the existence of the Co oxide, leading to OH repulsion between Pt–OH and Co oxides, as decreasing the OH coverage on surface Pt, and increasing the number of free Pt active sites.
In the second part, carbon-supported CoPt catalysts with metal loading of 40 wt% and Au addition of 3, 10, 12, and 25 at % (named as CoPtAu-1/C, CoPtAu-2/C, CoPtAu-3/C and CoPtAu-4/C, respectively) have been prepared. For the Au-modified CoPt/C catalysts with low Pt contents, their mass activity is about 2.6-9.2 times higher than that of commercial Pt/C. Besides, a significant enhancement in ORR performance based on the ADT test is noted for CoPtAu-1/C with Au core with a decay of 15 % after 1000 potential cycles. The promotion of ORR durability for CoPtAu-1/C is attributed to the Au core, in which the subsurface Au prevents the surface Pt from shrinking in the subsurface to damage the structure.
關鍵字(中) ★ 鈷基低鉑觸媒
★ 金
★ 排斥效應
★ 氧氣還原反應
★ 加速穩定度測
★ 未填滿之 d軌域數目
關鍵字(英) ★ CoPt/C catalysts
★ Au
★ repulsion effect
★ oxygen reduction reaction (ORR)
★ accelerated durability test (ADT)
★ number of unoccupied d-states (hTs)
論文目次 摘要 i
Abstract iii
致謝 v
Table of Contents vii
List of Figures ix
List of Tables xii
Chapter 1 Introduction 1
1.1 Low Pt cathode catalysts for ORR 3
1.2 The post heat treatment for Pt nanocatalysts 6
1.3 The structure-dependent catalysts through Au addition 10
1.4 Correlation between fine structure and ORR activity 13
1.5 Motivation and approach 15
Chapter 2 Experimental Section 16
2.1 Preparation of catalysts 16
2.1.1 Preparation of CoPt/C catalysts. 16
2.1.2 Preparation of CoPtAu/C catalysts 16
2.2 Characterization of catalysts 20
2.2.1 Inductively coupled plasma – atomic emission spectroscopy (ICP-AES) 20
2.2.2 X-ray diffraction (XRD) 20
2.2.3 High resolution transmission electron microscopy (HRTEM) 20
2.2.4 X-ray photoelectron spectroscopy (XPS) 22
2.2.5 Linear sweep voltammetry (LSV) 22
2.2.6 Cyclic voltammograms (CV) 23
2.2.7 Accelerated durability test (ADT) 24
2.2.8 X-ray absorption spectroscopy (XAS) 24
Chapter 3 Results and Discussion 26
3.1 The structural and electrochemical characterizations of carbon-supported CoPt catalysts 26
3.1.1 ICP and HRTEM characterizations 26
3.1.2 XRD and XPS characterizations 28
3.1.3 CV characterization 32
3.1.4 LSV and ADT characterizations 32
3.1.5 XAS characterization 37
3.1 The structural and electrochemical characterizations of carbon-supported CoPt catalysts through Au addition. 43
3.2.1 ICP and XRD characterizations 43
3.2.2 HRTEM characterizations 43
3.2.3 CV characterizations 46
3.2.4 XPS characterizations 50
3.2.5 LSV and ADT characterizations 50
3.2.6 Summary 55
Chapter 4 Conclusions 57
References 59
參考文獻 [1] A. Brouzgoua, S. Q. Song and P. Tsiakarasa, Appl. Catal. B: Environ. 127 (2012) 371-388.
[2] H. R. C. Mercado and B. N. Popov, J. Power Sources 155 (2006) 253-263.
[3] V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross and N. M. Markovic, Nat. Mater. 6 (2007) 241-247
[4] Y. Zhang, K. Zhu, X. Duan, X. Zhou and W. Yuan, J. Mater. Chem. A 2 (2014) 18666-18676.
[5] S. P. Lin, K. W. Wang, C. W. Liu, H. S. Chen and J. H. Wang, J. Phys. Chem. C 119 (2015) 15224-15231.
[6] J. Zhang, K. Sasaki, E. Sutter and R. R. Adzic, Science 315 (2007) 220-222.
[7] H. A. Gasteiger, S. S. Kocha, B. Sompalli and F. T. Wagner, Appl. Catal. B: Environ. 56 (2005) 9-35.
[8] V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley and J. K. Nørskov, Angew. Chem. Int. Ed. 118 (2006) 2963-2967.
[9] D. Cheng, X. Qiu and H. Yu, Phys. Chem. Chem. Phys. 16 (2014) 20377-20381.
[10] Y. Zhang, T. Han, J. Fang, P. Xu, X. Li, J. Xu and C.C. Liu, J. Mater. Chem. A 2 (2014) 11400-11407.
[11] H. Nan, X. Tian, J. Luo, D. Dang, R. Chen, L. Liu, X. Li, J. Zeng and S. Liao, J. Mater. Chem. A 4 (2016) 847-855.
[12] X. Ding, S. Yin, K. An, L. Luo, N. Shi, Y. Qiang, S. Pasupathi, B. G. Polletc and P. K. Shen, J. Mater. Chem. A 3 (2015) 4462-4469.
[13] C. Wang, M. Chi, G. Wang, D. V. D. Vliet, D. Li, K. More, H. H. Wang, J. A. Schlueter, N. M. Markovic and V. R. Stamenkovic, Adv. Funct. Mater. 21 (2011) 147-152.
[14] B. N. Wanjala, B. Fang, R. Loukrakpam, Y. Chen, M. Engelhard, J. Luo, J. Yin, L. Yang, S. Shan and C. J. Zhong, ACS Catal. 2 (2012) 795-806.
[15] K. J. J. Mayrhofer, V. Juhart, K. Hartl, M. Hanzlik and M. Arenz, Angew. Chem. Int. Ed. 48 (2009) 3529-3531.
[16] S. Koh, J. Leisch, M. F. Toney and P. Strasser, J. Phys. Chem. C 111 (2007) 3744-3752.
[17] Y. Gauthier, M. Schmid, S. Padovani, E. Lundgren, V. Bus, G. Kresse, J. Redinger and P. Varga, Phys. Rev. Lett. 87 (2001) 036103.
[18] E. Antolini, J. R. C. Salgado and E. R. Gonzalez, J. Power Sources 160 (2006) 957-968.
[19] K. Sasaki, H. Naohara, Y. Choi, Y. Cai, W. Chen, P. Liu and R. R. Adzic, Nat. Commun. 3 (2012) 1-5.
[20] K. Sasaki, H. Naohara, Y. Cai, Y. M. Choi, P. Liu, M. B. Vukmirovic, J. X. Wang and R. R. Adzic, Angew. Chem. Int. Ed. 49 (2010) 8602-8607.
[21] Y. C. Wei, T. Y. Chen, C. W. Liu, T. S. Chan, J. F. Lee, C. H. Lee, T. L. Lin and K. W. Wang, Catal. Sci. Technol. 2 (2012) 1654-1664.
[22] J. L. Fernandez, V. Raghuveer, A. Manthiram and A. J. Bard, J. Am. Chem. Soc. 127 (2005) 13100-13101.
[23] Y. Kim, J. W. Hong, W. Lee, M. Kim, D. Kim, W. S. Yun and S. W. Han, Angew. Chem. Int. Ed. 122 (2010) 10395-10399.
[24] Y. T. Liang, C. W. Liu, H. S. Chen, T. J. Lin, C. Y. Yang, T. L. Chen, C. H. Lin, M. C. Tu and K. W. Wang, RSC Adv. 5 (2015) 39205-39208.
[25] N. Ilayaraja, N. Prabu, N. Lakshminarasimhan, P. Murugan and D. Jeyakumar, J. Mater. Chem. A 1 (2013) 4048-4056.
[26] Y. T. Liang, S. P. Lin, C. W. Liu, S. R. Chung, T. Y. Chen, J. H. Wang and K. W. Wang, Chem. Commun. 51 (2015) 6605-6608.
[27] B. J. Hwang, L. S. Sarma, J. M. Chen, C. H. Chen, S. C. Shih, G. R. Wang, D. G. Liu, J. F. Lee and M. T. Tang, J. Am. Chem. Soc. 127 (2005) 11140-11145.
[28] F. J. Lai, L. S. Sarma, H. L. Chou, D. G. Liu, C. A. Hsieh, J. F. Lee and B. J. Hwang, J. Phys. Chem. C 113 (2009) 12674-12681.
[29] F. J. Lai, W. N. Su, L. S. Sarma, D. G. Liu, C. A. Hsieh, J. F. Lee and B. J. Hwang, Chem. Eur. J. 16 (2010) 4602-4611.
[30] S. Mukerjee, S. Srinivasan and M. P. Soriaga, J. Electrochem. Soc. 142 (1995) 1409-1422.
[31] H. S. Chen, Y. T. Liang, T. Y. Chen, Y. C. Tseng, C. W. Liu, S. R. Chung, C. T. Hsieh, C. E. Lee and K. W. Wang, Chem. Commun. 50 (2014) 11165-11168.
[32] Y. C. Tseng, H. S. Chen, C. W. Liu, T. H. Yeh and K. W. Wang, J. Mater. Chem. A 2 (2014) 4270-4275.
[33] A. Pozio, M. D Francesco, A. Cemmi, F. Cardellini and L. Giorgi, J. Power Sources 105 (2002) 13-19.
[34] E. Ticianelli, J. Beery and S. Srinivasn, J. Appl. Electrochem. 21 (1991) 597-605.
[35] E. Antolini, L. Giorgi, A. Pozio and E. Passalacqua, J. Power Sources 77 (1999) 136-142.
[36] S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, M. J. Eller, Phys. Rev. B 52 (1995) 2995-3009.
[37] D. Wang, P. Zhao and Y. Li, Sci. Rep. 1 (2011) 1-5.
[38] Y. Wang, C. M Yang, W. Schmidt, B. Spliethoff, E. Bill and F. Schuth, Adv. Mater. 17 (2005) 53-56.
[39] Q. Huang, H. Yang, Y. Tang, T. Lu and D. L. Akins, Electrochem. Commun. 8 (2006) 1220-1224.
[40] A. A. Karimpoor, U. Erb, K.T. Aust and G. Palumbo, Scripta Mater. 49 (2003) 651-656.
[41] T. Li, S. Yang, L. Huang, B. Gu and Y. Du, Nanotechnology 15 (2004) 1479-1482.
[42] N. A. Barakat, M. El-Newehy, S. S. Al-Deya and H. Y. Kim, Nanoscale Res. Lett. 9 (2014) 1-10.
[43] F.H.B. Lima, J.F.R. de Castro, L.G.R.A. Santos and E.A. Ticianelli, J. Power Sources 190 (2009) 293-300.
[44] S. Jiang, Y. Ma, G. Jian, H. Tao, X. Wang, Y. Fan, Y. Lu, Z. Hu and Y. Chen, Adv. Mater. 21 (2009) 4953-4956.
[45] S. P. Hsu, C. W. Liu, H. S. Chen, T. Y. Chen, C. M. Lai, C. H. Lee, J. F. Lee, T. S. Chan, L. D. Tsai and K. W. Wang, Electrochim. Acta 105 (2013) 180-187.
[46] J. Roques and A. B. Anderson, Surf. Sci. 581 (2005) 105-117.
[47] J. Zhang, M. B. Vukmirovic, K. Sasaki, A. U. Nilekar, M. Mavrikakis and R. R. Adzic, J. Am. Chem. Soc. 127 (2005) 12480-12481.
[48] A. N. Mansour, J. W. Cook, Jr. and D. E. Sayers, J. Phys. Chem. 88 (1984) 2330-2334.
[49] J. M. Ramallo-Lopez, G. F. Santori, L. Giovanetti, M. L. Casella, O. A. Ferretti and F. G. Requejo, J. Phys. Chem. B 107 (2003) 11441-11451.
[50] T. H. Yeh, C. W. Liu, H. S. Chen and K. W. Wang, Electrochem. Commun. 31 (2013) 125-128.
[51] L. Jin, L. Wang, D. Mott, P. N. Njoki, T. Lin, T. He, Z. Xu, B. N. Wanjana, I. I. S. Lim and C. J. Zhong, Adv. Mater. 20 (2008) 4342-4347.
[52] Y. Ma, H. Zhang, H. Zhong, T. Xu, H. Jin and X. Geng, Catal. Commun. 11 (2010) 434-437.
[53] J. Jiang and B. Yi, J. Electroanal. Chem. 577 (2005) 107-115.
[54] F. Pan, Y. Duan, X. Zhang and J. Zhang, ChemCatChem 8 (2015) 163-170.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2016-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明