博碩士論文 103329012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:132 、訪客IP:18.119.139.50
姓名 許朕綱(Chen-Kang Hsu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 旋轉塗佈摻雜共擴散製程開發並應用於 N 型矽晶雙面受光型太陽能電池
(Fabrication of spin-on dopants co-diffusion process and applying to bifacial n-type silicon solar cells)
相關論文
★ 開發鎵奈米粒子沉浸於可拉伸聚合物之可調式電漿子結構★ 利用等效差分時域(FDTD)模擬分析自組裝鎵奈米顆粒嵌入可拉伸彈性材料光學性質探討
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質
★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究
★ 磷摻雜矽奈米晶粒嵌入於氮化矽基材之材料成長與特性分析★ 利用電子迴旋共振化學氣相沉積法製備多層SiOxNy:H/SiCxNy:H抗反射薄膜及其於矽基太陽能電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於 N 型單晶矽晶圓,因生產成本的下降,專家們預測從 2013 年後在太陽能產業的比重會日益增加,甚至成為太陽能產業的主流,所以不論學界及業界對於 N 型單晶矽太陽能電池的開發成本與轉換效率所投入的研究會日益增加,而本論文也針對 N 型單晶矽太陽能電池進行製程上的改良。
對於一般以擴散製程製作的 N 型太陽能電池而言,在形成電池射極 (Emitter) 與背表面電場 (Back surface field, BSF) 的過程都是藉由外加載子高溫擴散進入矽晶圓形成,在這過程中除了傳統氣態擴散的製程較為危險和複雜以外,對矽晶圓造成多次熱應力使矽晶圓品質下降也是另外一個缺點。所以在本論文裡,藉由磷酸與硼酸的旋轉塗佈高溫共擴散法 (Co-diffusion by spin-on dopants),以一次高溫擴散的方式形成射極與背表面電場,這樣不僅擴散源較為安全環保,另外有效的降低電池製作成本及減少電池製備的時間也是此製程的優點。
摘要(英) In conventional n-type silicon solar cells fabrication processing, the emitter and the back surface field (BSF) are formed through two-step diffusion. However, there
are some disadvantages in traditional two-steps diffusion process such as complicated procedures, high thermal budge, toxic and cost.
In conventional diffusion process, BBr 3 and POCl 3 are usually used to be the dopants sources. In this thesis, it was used phosphorous acid and boron acid to be the dopants sources. We also combined the co-diffusion process and spin-on dopants
process to form the emitter and BSF of n-type silicon solar cells. It could effectively reduce the annealing time and decrease the production cost. Besides, the dopants sources (phosphorous acid and boron acid) are non-toxic.
This novel process is compared to the traditional two-step diffusion by spin-on
dopants. The lifetime measurement and implied open-circuit voltage measurement are
carried out.
The efficiency of the bifacial n-type silicon solar cell=11.5%, Voc =597.2 mV, Jsc =33.0 mA/cm2 and fill factor =58.5 %.
關鍵字(中) ★ N 型單晶矽
★ 旋轉塗佈摻雜
★ 高溫共擴散法
★ 雙面受光型太陽能電池
關鍵字(英) ★ n-type Si cells
★ co-diffusion process
★ spin-on dopants
★ bifacial n-Si solar cells
論文目次 摘 要 - - - - - - - - - - ---------------- - - - - - - I
A b s t r a c t - - - - - -- --- - - - - - - - - - - I I
致 謝 - - - - - - - -- - - ------ - - - - - - - - - I I I
圖 目 錄 - - - - - - - - - - - - - - - - - - - - - - - V
表 目 錄 - - - - -- - - - - - - - - - - - - - - - V I I I
第 一 章 緒 論 - - - - - - - - - - - - - - - - - - - - - 1
1 - 1 前 言 - - - - - - - - - - - - - - - - - - - - - - 1
1-2研究背景與動機--------------==------------------------3
第二章文獻回顧-------------------------------------------5
2-1概論-------------------------------------------------5
2-2太陽光譜----------------------------------------------7
2-3太陽能電池的分類--------------------------------------9
2-3-1 太陽能電池的世代-----------------------------------9
2-3-2 矽基太陽能電池分類---------------------------------9
2-3-3晶體矽太陽能電池結構--------------------------------10
2-4 太陽能電池基本原理----------------------------------14
2-4-1太陽能電池運作機制---------------------------------14
2-4-2太陽能電池基礎參數---------------------------------15
2-5 太陽能電池複合機制----------------------------------20
2-6 表面鈍化機制----------------------------------------23
2-6-1表面鈍化效應---------------------------------------23
2-6-1-1 磷擴散的表面鈍化效應-----------------------------24 2-6-1-2 硼擴散的表面鈍化效應-----------------------------25
2-6-2鄰擴散與硼擴散製程---------------------------------27
第三章研究方法------------------------------------------30
3-1 實驗流程--------------------------------------------30
3-2 擴散源溶液製備--------------------------------------31
3-3 基板粗糙化------------------------------------------31
3-4 表面鈍化效應分析------------------------------------32
3-5 雙面受光型太陽能電池開發-----------------------------34
3-6 儀器分析--------------------------------------------36
第四章結果探討------------------------------------------38
4-1 親水層製作------------------------------------------38
4-2 基本雙面擴散分析------------------------------------39
4-2-1不同擴散時間的分析---------------------------------39
4-2-2不同擴散源濃度的分析--------------------------------42
4-2-3不同擴散氣氛的分析---------------------------------45
4-3 矽晶太陽能電池開發----------------------------------49
4-3-1 共擴散製程與兩段擴散製程表面鈍化效應比較------------49
4-3-2太陽能電池特性分析---------------------------------50
第五章結論----------------------------------------------52
參考文獻------------------------------------------------53
參考文獻
參考文獻
[1]International Institurte for Applied Systems Analysis, 2012.
[2]http://climate.nasa.gov/key_indicators#globalTemp
[3]https://www.theclimategroup.org/what-we-do/news-and-blogs/global-renewable-en
ergy-capacity-increased-120-since-2000
[4]https://commons.wikimedia.org/wiki/File:Price_history_of_silicon_PV_cells_since
_1977.svg
[5] S. Pizzini, "Towards solar grade silicon: Challenges and benefits for low cost
photovoltaics", Solar Energy Materials & Solar Cells, 94, 1528-1533, 2010.
[6] D. Macdonald, "PHOSPHORUS GETTERING IN MULTICRYSTALLINE
SILICON STUDIED BY NEUTRON ACTIVATION ANALYSIS", IEEE, 2,
0-7803-7471-1, 2002.
[7]M. Kerr and A. Cuevas, “General parameterization of Auger recombination in
crystalline silicon”, Journal of Applied Physics, 91, 2473-2481 ,2002.
[8] S. Muramatsu., et al., “Effect of hydrogen radical annealing on SiN passive solar
cells”. Solar Energy Materials and Solar Cells., 65, 599-606 ,2001.
[9] Y. Lee et al., “Stability of SiN X /SiN X double stack antireflection coating for single
crystalline silicon solar cells”. Nanoscale Research Letters, 7, 1-6 ,2012.
[10] S. Dauwe, L.Mittelstadt, A. Metz, and R. Hezel “Experimental evidence of
parasitic shunting in silicon nitride rear surface passivated solar cells”. Progress in
photovoltaics, 10, 271-278, ,2002.
[11] S. Salemi et al., “The effect of defects and their passivation on the density of
states of the 4H-silicon-carbide/silicon-dioxide interface”, Journal of Applied Physics
113,053703 ,2013.
[12] L.S.Chang, P.L. Gendler, and J.H. Jou, “Thermal, mechanical and chemical 54

effects in the degradation of the plasma-deposited alpha-rich passivation layer in a
multilayer thin-film device”. Journal of Materials Science, 26, 1882-1890 ,1999.
[13] J.H. Jang and K.S. Lim, “Post hydrogen treatment effects of boron-doped
a-SiC:H p-layer of a-Si:H solar cell using a mercury-sensitized photo-chemical vapor
deposition method”, Japanese journal of applied physics part 1-regular papers short
notes & review papers, 36, 6230-6236 ,1997.
[14] S. Sepeai et al., “Surface passivation studies on n +
pp
+
bifacial solar cell”.
International Journal of Photoenergy, 10, 1155-1162, 2012.
[15] J.D. Alamo, J.V. Meerbergen, F. d′Hoore, J. Nijs, “High-low junctions for solar
cell applications”. Solid-State Electronics, 24, 533-538 ,1980.
[16] M. P. Godlewski, C. R. Baraona, W. Henry , “Low-high junction theory applied
to solar cells”, 10th Photovoltaic Specialists′ Conf., IEEE, 29, 131-150, 1990.
[17] https://www.newport.com/f/solar-simulator-accessories
[18] http://pveducation.org/pvcdrom/properties-of-sunlight/atmospheric-effects
[19] http://www.slideshare.net/maliksameeullah/solar-pv-cell-31223997
[20] S. Park, S. Bae, H. Kim, S. Kim, D.Y. Kim, H. Park, S.Kim, S.J. Tark, C.S. Son,
D. Kim, “Effects of controllable process factors on Al rear surface bumps in Si solar
cells”, Current Applied Physics, 12, 17-22,2012.
[21]http://www.solarchoice.net.au/blog/news/quiet-innovations-keeping-screen-printe
d-solar-cells-on-top-080215
[22] J. Zhao, A. Wang, M.A. Green , “High efficiency PERL silicon solar cells on FZ
and MCZ substrates”, Technical digest of the 11th International Photovoltaic Science
and Engineering Conference, 65, 429-435 ,2001.
[23] S. Gatz, K. Bothe, J. Mueller, T. Dullweber, and R. Brendel, “Analysis of local
Al-doped back surface fields for high efficiency screen-printed solar cells”, Energy 55

Procedia, 8, 318–323 ,2011.
[24] A.U. Rehman, S.H. Lee “Review of the Potential of the Ni/Cu Plating Technique
for Crystalline Silicon Solar Cells” Materials, 7(2), 1318-1341, 2014
[25] http://www.panasonic.com/global/home.html
[26] A.U. Rehman, S.H. Lee “ Advancements in n-Type Base Crystalline Silicon
Solar Cells and Their Emergence in the Photovoltaic Industry”, The Scientific World
Journal, 470437, 2013
[27] http://www.pv-tech.org/solar-media-store-shutdown
[28] http://old.hssyxx.com/zhsj/kexue-2/co6-2/6-21/206.htm
[29] M. wolf, H. Rauschenbach, Advanced energy conversion, 3, 455-479 ,1963
[30] S.O. Kasap “Optoelectronics and Photonics Principles and Practices, Prentice –
Hall”, 2001.
[31] H. Hoppe, N. S. Sariciftci, “Organic solar cells”, Journal of materials research,
19, 1924-1945 ,2004.
[32] B. Fischer, “Loss analysis of crystalline silicon solar cells using
photo-conductance and quantum efficiency measurements”, PhD Thesis, University
of Konstanz , 2003.
[33] R. Schimpe, “Theory of reflection at the facet of a semiconductor-laser”,
International Journal of Electronics and Communications, 46, 80-85 ,1992.
[34] A. Das, "Development of high-efficiency boron diffused silicon solar cells", PhD
dissertation, Atlanta, Georgia, Georgia: Institute of Technology, School of Electrical
and Computer Engineering, 2012
[35] A. G. Aberle, Crystalline silicon solar cells: advanced surface passivation and
analysis, University of New South Wales, Sydney NSW 2052, 1999.
[36] J. P. Colinge and C. A. Colinge, “Physics of semiconductor devices”, Kluwer
academic publishers, 2005. 56

[37] S. M. Sze, and K. K. Ng, “Physics of semiconductor devices”, John Wiley &
Sons, Inc., Hoboken, NJ, USA. 2006.
[38] S.J. Choi, et al., “The electrical properties and hydrogen passivation
effect in monocrystalline silicon solar cell with various pre-deposition
times in doping process”, Renewable Energy, 54, 96-100 ,2013.
[39] A. B. Sproul, M. A. Green, and A. W. Stephens, “Accurate determination of
minority carrier-and lattice scattering-mobility in silicon from photo-conductance
decay”, J. Appl. Phys., 72, 4161-4171 ,1992.
[40] M. S. Tyagi and R. V. Overstraeten, “Minority carrier recombination in heavily
doped silicon”, Solid-St. Electron., 26, 577-597 ,1983.
[41] M. J. Kerr and A. Cuevas, “General parameterization of Auger recombination in
crystalline silicon”, J. Appl. Phys., 91, 97-104 ,2002.
[42] W. Shockley and W. Read, “Statistics of the Recombination of holes and
electrons”, Phys. Rev., 87, 835-842 ,1952.
[43] I. Martín, M. Vetter, M. Garín, A. Orpella, C. Voz, J. Puigdollers, and R.
Alcubilla “Crystalline silicon surface passivation with amorphous SiCx:H films
deposited by plasma-enhanced chemical-vapor deposition”, Journal of
Applied Physics, 98, 114912-114921 ,2005.
[44] M. Kerr and A. Cuevas, “General parameterization of auger recombination in
crystalline silicon”, Journal of Applied Physics, 91, 2473-2481 ,2002.
[45] S. Dauwe, “Low-temperature surface passivation of crystalline Silicon and its
application to the rear side of solar cells”, harderberg ,2004.
[46] H. Park et al, “Effect of the phosphorus gettering on si heterojunction solar cells“,
International Journal of Photoenergy, 794867, 2012.
[47] G. Singh, V. Amit, R. Jeyakumar “Fabrication of c-Si solar cells using boric acid 57

as a spin-on dopant for back surface field“, The Royal Society of Chemistry, 4, 4225–
4229 ,2014.
[48] A. Das, "Development of high-efficiency boron diffused silicon solar cells", PhD
dissertation, Atlanta, Georgia, Georgia: Institute of Technology, School of Electrical
and Computer Engineering , 2012.
[49] J. Peter , "The influence of diffusion-Induced dislocations on high efficiency
silicon solar cells", IEEE Transactions on electron devices, 53, 3 ,2006.
[50] H. Park et al, “Effect of the phosphorus gettering on si heterojunction solar cells“,
International Journal of Photoenergy, 794867 ,2012.
[51] K.S. Ryu, “DEVELOPMENT OF LOW-COST AND HIGH-EFFICIENCY
COMMERCIAL SIZE N-TYPE SILICON SOLAR CELLS”. PhD
dissertation ,Georgia Institute of Technology , 2015
[52] V. D. Mihailetchi, Proc. 25
th
Eur. Photovoltaic Sci. Eng. Conf., 1446–1448 ,2010.
[53] G. Singh, The Royal Society of Chemistry, 4, 4225–4229 ,2014.
[54] J. LIBAL. et al., Proceedings of the 22
th
European Photovoltaic Solar Energy
Conference, 1382-1386 , 2007.
[55] J. Y. Lee and S. W. Glunz, Proc. 19
th
EU-PVSEC, 998-1001 ,2004.
[56] G. Bueno, Proc. 20
th
EU-PVSEC, 1458-1461 ,2005.
[57] A. Das, "Development of high-efficiency boron diffused silicon solar cells", PhD
dissertation, Atlanta, Georgia, Georgia: Institute of Technology, School of Electrical
and Computer Engineering , 2012.
[58] C. Gao, Y. Lu, P. Dong, J. Yi, X. Ma, and D. Yang, “Boron deactivation in
heavily boron-doped Czochralski silicon during rapid thermal anneal: Atomic level
understanding”, Applied Physics Letters, 104, 032102 ,2014.
[59] F. Ma et al, “Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon”, J. Appl. Phys., 116, 184103 ,2014.
[60] B. Bazer-Bachi et al., “Higher emitter quality by reducing inactive phosphorus”,
Solar Energy Materials & Solar Cells, 105, 137-141 ,2012.
[61]T. Joge et al, “Low-Temperature Boron Gettering for Improve the Carrier
Lifetime in Fe-Contaminated Bifacial Silicon Cells with n
+
pp
+
Back-Surface-Field
Structure”, Jpn. J. Appl. Phys., 42, 5397-5404 ,2003.
[62] Y. Wu, X. Yu, H. He, P. Chen and D. Yang “Suppression of boron-oxygen
defects in Czochralski silicon by carbon co-doping”, Applied Physics Letters, 106,
102105 ,2015.
[63] N. Ganagona, L. Vines, E. V. Monakhov, and B. G. Svensson, “Transformation
of divacancies to divacancy-oxygen pairs in p-type Czochralski-silicon mechanism of
divacancy diffusion”, J. Appl. Phys., 115, 034514 ,2014.
[64] D. Kumar, S. Saravanan and P. Suratkar ”Effect of oxygen ambient during
phosphorous diffusionon silicon solar cell”, Journal of Renewable and Sustainable
Energy 4 ,033105, 2012
指導教授 陳一塵(I-Chen Chen) 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明